A200109 Decimal expansion of least x satisfying 2*x^2 - cos(x) = 2*sin(x), negated.
3, 5, 2, 3, 6, 5, 0, 0, 5, 7, 7, 7, 3, 2, 6, 4, 5, 3, 1, 0, 2, 8, 6, 6, 1, 9, 5, 3, 5, 9, 9, 9, 6, 8, 1, 0, 8, 6, 8, 5, 9, 0, 3, 3, 1, 2, 4, 3, 7, 1, 6, 9, 7, 9, 3, 6, 0, 2, 5, 2, 5, 0, 3, 8, 5, 6, 6, 5, 7, 4, 5, 4, 2, 5, 4, 0, 3, 3, 6, 7, 0, 3, 7, 7, 7, 9, 1, 1, 0, 6, 1, 4, 3, 6, 9, 5, 9, 4, 6
Offset: 0
Examples
least x: -0.35236500577732645310286619535999... greatest x: 1.056698376942878122192408303117...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 2; b = -1; c = 2; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.36, -.35}, WorkingPrecision -> 110] RealDigits[r] (* A200109 *) r = x /. FindRoot[f[x] == g[x], {x, 1.05, 1.06}, WorkingPrecision -> 110] RealDigits[r] (* A200110 *)
-
PARI
a=2; b=-1; c=2; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 25 2018
Comments