A200121 Decimal expansion of greatest x satisfying 2*x^2 - 3*cos(x) = sin(x).
1, 0, 7, 4, 3, 0, 9, 2, 0, 6, 5, 0, 6, 0, 4, 6, 8, 9, 0, 1, 0, 8, 3, 5, 7, 7, 7, 8, 9, 2, 8, 6, 3, 0, 6, 3, 4, 2, 8, 6, 1, 7, 0, 7, 8, 6, 8, 2, 3, 6, 6, 6, 0, 5, 3, 6, 8, 9, 9, 5, 0, 4, 9, 9, 8, 3, 8, 8, 0, 3, 8, 0, 7, 6, 1, 3, 0, 6, 5, 9, 0, 0, 0, 8, 8, 4, 2, 5, 8, 8, 9, 8, 3, 5, 2, 6, 5, 9, 1
Offset: 1
Examples
least x: -0.815233223410514131205921200022220970300... greatest x: 1.0743092065060468901083577789286306342...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 2; b = -3; c = 1; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.82, -.81}, WorkingPrecision -> 110] RealDigits[r] (* A200120 *) r = x /. FindRoot[f[x] == g[x], {x, 1.07, 1.08}, WorkingPrecision -> 110] RealDigits[r] (* A200121 *)
-
PARI
a=2; b=-3; c=1; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 29 2018
Comments