A200124 Decimal expansion of least x satisfying 2*x^2 - 3*cos(x) = 3*sin(x), negated.
6, 0, 9, 4, 1, 6, 8, 3, 3, 2, 6, 3, 2, 7, 5, 2, 9, 9, 9, 3, 0, 7, 5, 3, 5, 9, 9, 3, 1, 6, 0, 5, 4, 8, 2, 2, 7, 8, 5, 2, 3, 3, 0, 3, 0, 5, 9, 3, 5, 8, 3, 5, 5, 5, 9, 6, 0, 5, 1, 3, 3, 4, 7, 1, 7, 8, 1, 7, 1, 9, 6, 0, 4, 8, 7, 5, 2, 6, 3, 9, 0, 1, 3, 4, 2, 5, 3, 7, 1, 3, 4, 8, 5, 4, 4, 5, 6, 0, 3
Offset: 0
Examples
least x: -0.6094168332632752999307535993160... greatest x: 1.34204053424075776611980105081...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 2; b = -3; c = 3; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.61, -.60}, WorkingPrecision -> 110] RealDigits[r] (* A200124 *) r = x /. FindRoot[f[x] == g[x], {x, 1.34, 1.35}, WorkingPrecision -> 110] RealDigits[r] (* A200125 *)
-
PARI
a=2; b=-3; c=3; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 01 2018
Comments