A200128 Decimal expansion of least x satisfying 2*x^2 - 4*cos(x) = sin(x), negated.
9, 1, 1, 2, 5, 1, 3, 6, 5, 7, 7, 2, 4, 8, 2, 4, 1, 2, 5, 4, 9, 4, 7, 3, 1, 8, 2, 8, 0, 2, 9, 3, 7, 5, 4, 5, 8, 5, 3, 9, 1, 6, 1, 5, 9, 8, 2, 1, 2, 5, 4, 4, 8, 1, 0, 6, 1, 2, 1, 6, 3, 7, 4, 6, 8, 9, 5, 1, 8, 0, 7, 4, 2, 6, 6, 7, 5, 7, 8, 7, 6, 4, 4, 3, 4, 7, 9, 9, 8, 2, 9, 9, 5, 5, 9, 6, 9, 2, 2
Offset: 0
Examples
least x: -0.91125136577248241254947318280293... greatest x: 1.13740119952686852650278803084...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 2; b = -4; c = 1; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.92, -.91}, WorkingPrecision -> 110] RealDigits[r] (* A200128 *) r = x /. FindRoot[f[x] == g[x], {x, 1.13, 1.14}, WorkingPrecision -> 110] RealDigits[r] (* A200129 *)
-
PARI
a=2; b=-4; c=1; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 01 2018
Comments