A200131 Decimal expansion of greatest x satisfying 2*x^2 - 4*cos(x) = 3*sin(x).
1, 3, 6, 8, 1, 4, 9, 1, 1, 2, 0, 4, 2, 0, 6, 7, 6, 6, 7, 9, 9, 7, 6, 9, 9, 1, 0, 8, 8, 9, 0, 6, 9, 2, 6, 6, 7, 5, 9, 0, 3, 6, 3, 8, 6, 9, 7, 9, 8, 2, 3, 5, 6, 8, 8, 7, 6, 8, 3, 8, 1, 0, 1, 7, 8, 4, 0, 2, 0, 0, 9, 5, 7, 2, 9, 5, 6, 3, 9, 7, 4, 8, 1, 6, 1, 3, 1, 7, 9, 1, 3, 4, 2, 8, 1, 1, 0, 1, 7
Offset: 1
Examples
least x: -0.719005064558842927859271780848179382... greatest x: 1.368149112042067667997699108890...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 2; b = -4; c = 3; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.72, -.71}, WorkingPrecision -> 110] RealDigits[r] (* A200130 *) r = x /. FindRoot[f[x] == g[x], {x, 1.36, 1.37}, WorkingPrecision -> 110] RealDigits[r] (* A200131 *)
-
PARI
a=2; b=-4; c=3; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 01 2018
Comments