A200132 Decimal expansion of least x satisfying 3*x^2 - cos(x) = sin(x), negated.
4, 1, 3, 7, 5, 1, 7, 5, 9, 1, 4, 4, 7, 7, 3, 9, 3, 7, 6, 8, 4, 4, 0, 0, 2, 7, 9, 8, 9, 8, 9, 2, 7, 5, 6, 4, 5, 9, 9, 2, 2, 5, 1, 3, 8, 5, 5, 5, 7, 8, 6, 6, 1, 8, 6, 3, 7, 5, 1, 5, 2, 8, 7, 7, 7, 8, 7, 6, 3, 1, 5, 3, 2, 0, 3, 3, 8, 4, 9, 9, 6, 1, 7, 4, 1, 5, 9, 0, 0, 6, 9, 1, 1, 8, 7, 6, 2, 3, 7
Offset: 0
Examples
least x: -0.4137517591447739376844002798989... greatest x: 0.68485307862320115956369446864...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 3; b = -1; c = 1; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.42, -.41}, WorkingPrecision -> 110] RealDigits[r] (* A200132 *) r = x /. FindRoot[f[x] == g[x], {x, .68, .69}, WorkingPrecision -> 110] RealDigits[r] (* A200133 *)
-
PARI
a=3; b=-1; c=1; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 05 2018
Comments