cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200143 Nodes of degree 1 in graphs of XOR connected primes in successive intervals [2^i+1,2^(i+1)-1], i>=1.

Original entry on oeis.org

5, 7, 11, 13, 23, 47, 61, 83, 131, 191, 211, 223, 241, 317, 331, 397, 467, 479, 491, 503, 509, 563, 577, 613, 727, 743, 757, 829, 887, 907, 941, 947, 997, 1009, 1021, 1039, 1069, 1087, 1097, 1109, 1223, 1229, 1237, 1381, 1399, 1423, 1447, 1523, 1543, 1549
Offset: 1

Views

Author

Brad Clardy, Nov 14 2011

Keywords

Comments

The number used to produce the XOR couple is 2^i-2, with i sharing the index value of the initial interval and decremented in halved intervals down to 2.

Examples

			In the interval [17,31], i=4, the XOR couple number is 2^4-2=14. For half intervals it is 2^3-2 = 6, and the final application would be 2^2-2 = 2. All of the pairings can be represented as:
|-------XOR 14-------|
|  |--------------|  |
|  |  |--------|  |  |
|  |  |  |--|  |  |  |
17 19 21 23 25 27 29 31
|-XOR  6-|  |-XOR  6-|
|  |--|  |  |  |--|  |
17 19 21 23 25 27 29 31
XOR   XOR   XOR   XOR
|2-|  |2-|  |2-|  |2-|
17 19 21 23 25 27 29 31
The prime XOR couples are (17,31), (19,29), (17,23), (17,19), (29,31) which produces the graph:
  17 19 23 29 31
17 0  1  1  0  1             19
19 1  0  0  1  0           /    \
23 1  0  0  0  0   or  23~17~31~29
29 0  1  0  0  1
31 1  0  0  1  0
Therefore 23 is the only node of degree 1 in the interval.
		

Crossrefs

Cf. A199824.

Programs

  • Maple
    q:= (l, p, r)-> `if`(r-l=2, 0, `if`(isprime(l+r-p), 1, 0)+
                    `if`((l+r)/2>p, q(l, p, (l+r)/2), q((l+r)/2, p, r))):
    a:= proc(n) local p, l;
          p:= `if`(n=1, 1, a(n-1));
          do p:= nextprime(p);
             l:= 2^ilog2(p);
             if q(l, p, l+l)=1 then break fi
          od; a(n):=p
        end:
    seq(a(n), n=1..60);  # Alois P. Heinz, Nov 15 2011
  • Mathematica
    q[l_, p_, r_] := q[l, p, r] = If[r - l == 2, 0, If[PrimeQ[l + r - p], 1, 0] + If[(l + r)/2 > p, q[l, p, (l + r)/2], q[(l + r)/2, p, r]]];
    a[n_] := a[n] = Module[{p, l}, p = If[n==1, 1, a[n-1]]; While[True, p = NextPrime[p]; l = 2^Floor@Log[2, p]; If[q[l, p, l+l]==1, Break[]]]; p];
    Array[a, 60] (* Jean-François Alcover, Nov 12 2020, after Alois P. Heinz *)