A200143 Nodes of degree 1 in graphs of XOR connected primes in successive intervals [2^i+1,2^(i+1)-1], i>=1.
5, 7, 11, 13, 23, 47, 61, 83, 131, 191, 211, 223, 241, 317, 331, 397, 467, 479, 491, 503, 509, 563, 577, 613, 727, 743, 757, 829, 887, 907, 941, 947, 997, 1009, 1021, 1039, 1069, 1087, 1097, 1109, 1223, 1229, 1237, 1381, 1399, 1423, 1447, 1523, 1543, 1549
Offset: 1
Keywords
Examples
In the interval [17,31], i=4, the XOR couple number is 2^4-2=14. For half intervals it is 2^3-2 = 6, and the final application would be 2^2-2 = 2. All of the pairings can be represented as: |-------XOR 14-------| | |--------------| | | | |--------| | | | | | |--| | | | 17 19 21 23 25 27 29 31 |-XOR 6-| |-XOR 6-| | |--| | | |--| | 17 19 21 23 25 27 29 31 XOR XOR XOR XOR |2-| |2-| |2-| |2-| 17 19 21 23 25 27 29 31 The prime XOR couples are (17,31), (19,29), (17,23), (17,19), (29,31) which produces the graph: 17 19 23 29 31 17 0 1 1 0 1 19 19 1 0 0 1 0 / \ 23 1 0 0 0 0 or 23~17~31~29 29 0 1 0 0 1 31 1 0 0 1 0 Therefore 23 is the only node of degree 1 in the interval.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A199824.
Programs
-
Maple
q:= (l, p, r)-> `if`(r-l=2, 0, `if`(isprime(l+r-p), 1, 0)+ `if`((l+r)/2>p, q(l, p, (l+r)/2), q((l+r)/2, p, r))): a:= proc(n) local p, l; p:= `if`(n=1, 1, a(n-1)); do p:= nextprime(p); l:= 2^ilog2(p); if q(l, p, l+l)=1 then break fi od; a(n):=p end: seq(a(n), n=1..60); # Alois P. Heinz, Nov 15 2011
-
Mathematica
q[l_, p_, r_] := q[l, p, r] = If[r - l == 2, 0, If[PrimeQ[l + r - p], 1, 0] + If[(l + r)/2 > p, q[l, p, (l + r)/2], q[(l + r)/2, p, r]]]; a[n_] := a[n] = Module[{p, l}, p = If[n==1, 1, a[n-1]]; While[True, p = NextPrime[p]; l = 2^Floor@Log[2, p]; If[q[l, p, l+l]==1, Break[]]]; p]; Array[a, 60] (* Jean-François Alcover, Nov 12 2020, after Alois P. Heinz *)
Comments