A245134 T(n,k)=Number of length n 0..k arrays least squares fitting to a zero slope straight line, with a single point taken as having zero slope.
2, 3, 2, 4, 3, 4, 5, 4, 9, 4, 6, 5, 16, 9, 8, 7, 6, 25, 22, 39, 8, 8, 7, 36, 41, 112, 43, 20, 9, 8, 49, 66, 275, 172, 195, 18, 10, 9, 64, 107, 552, 505, 1064, 243, 52, 11, 10, 81, 158, 1029, 1248, 4005, 1742, 1209, 48, 12, 11, 100, 219, 1728, 2687, 11856, 8193, 11664, 1539
Offset: 1
Examples
Some solutions for n=7 k=4 ..3....1....2....0....4....0....2....3....0....4....3....1....0....2....4....1 ..1....4....0....0....0....1....1....0....3....0....3....3....2....1....0....3 ..2....4....2....4....4....2....3....0....4....2....0....1....3....0....4....0 ..3....2....4....0....1....2....4....4....3....3....2....4....1....2....4....1 ..2....3....3....1....2....1....3....0....4....0....4....4....0....1....0....0 ..1....3....1....0....1....0....1....3....0....1....1....3....2....2....2....0 ..3....2....1....1....4....1....2....1....2....4....3....0....1....1....4....3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..9999
Crossrefs
Formula
Empirical for row n:
n=1: a(n) = 2*a(n-1) -a(n-2)
n=2: a(n) = 2*a(n-1) -a(n-2)
n=3: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3)
n=4: a(n) = 2*a(n-1) -a(n-2) +2*a(n-3) -4*a(n-4) +2*a(n-5) -a(n-6) +2*a(n-7) -a(n-8)
n=5: a(n) = 2*a(n-1) +2*a(n-2) -6*a(n-3) +6*a(n-5) -2*a(n-6) -2*a(n-7) +a(n-8)
n=6: [order 18]
n=7: [order 16]
Comments