cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A245134 T(n,k)=Number of length n 0..k arrays least squares fitting to a zero slope straight line, with a single point taken as having zero slope.

Original entry on oeis.org

2, 3, 2, 4, 3, 4, 5, 4, 9, 4, 6, 5, 16, 9, 8, 7, 6, 25, 22, 39, 8, 8, 7, 36, 41, 112, 43, 20, 9, 8, 49, 66, 275, 172, 195, 18, 10, 9, 64, 107, 552, 505, 1064, 243, 52, 11, 10, 81, 158, 1029, 1248, 4005, 1742, 1209, 48, 12, 11, 100, 219, 1728, 2687, 11856, 8193, 11664, 1539
Offset: 1

Views

Author

R. H. Hardin, Jul 12 2014

Keywords

Comments

Table starts
..2....3.....4......5......6.......7.......8........9.......10........11
..2....3.....4......5......6.......7.......8........9.......10........11
..4....9....16.....25.....36......49......64.......81......100.......121
..4....9....22.....41.....66.....107.....158......219......304.......403
..8...39...112....275....552....1029....1728.....2781.....4200......6171
..8...43...172....505...1248....2687....5220.....9385....15868.....25539
.20..195..1064...4005..11856...29813...66256...134091...252060....446193
.18..243..1742...8193..29182...85529..217336...494943..1033716...2012883
.52.1209.11664..68855.294024.1006089.2920784..7483887.17365380..37197259
.48.1539.19976.147117.754712.3011889.9995864.28810117.74285448.175024363

Examples

			Some solutions for n=7 k=4
..3....1....2....0....4....0....2....3....0....4....3....1....0....2....4....1
..1....4....0....0....0....1....1....0....3....0....3....3....2....1....0....3
..2....4....2....4....4....2....3....0....4....2....0....1....3....0....4....0
..3....2....4....0....1....2....4....4....3....3....2....4....1....2....4....1
..2....3....3....1....2....1....3....0....4....0....4....4....0....1....0....0
..1....3....1....0....1....0....1....3....0....1....1....3....2....2....2....0
..3....2....1....1....4....1....2....1....2....4....3....0....1....1....4....3
		

Crossrefs

Column 1 is A222955, terms 1,3,5... are A000980
Column 2 is A223743
Column 3 is A223819
Row 1 is A000027(n+1)
Row 2 is A000027(n+1)
Row 3 is A000290(n+1)
Row 4 is A200155

Formula

Empirical for row n:
n=1: a(n) = 2*a(n-1) -a(n-2)
n=2: a(n) = 2*a(n-1) -a(n-2)
n=3: a(n) = 3*a(n-1) -3*a(n-2) +a(n-3)
n=4: a(n) = 2*a(n-1) -a(n-2) +2*a(n-3) -4*a(n-4) +2*a(n-5) -a(n-6) +2*a(n-7) -a(n-8)
n=5: a(n) = 2*a(n-1) +2*a(n-2) -6*a(n-3) +6*a(n-5) -2*a(n-6) -2*a(n-7) +a(n-8)
n=6: [order 18]
n=7: [order 16]
Showing 1-1 of 1 results.