cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A245136 Number of length 6 0..n arrays least squares fitting to a zero slope straight line, with a single point taken as having zero slope.

Original entry on oeis.org

8, 43, 172, 505, 1248, 2687, 5220, 9385, 15868, 25539, 39428, 58805, 85144, 120163, 165900, 224593, 298832, 391539, 505928, 645645, 814656, 1017335, 1258484, 1543341, 1877624, 2267451, 2719516, 3240965, 3839476, 4523383, 5301420, 6183009
Offset: 1

Views

Author

R. H. Hardin, Jul 12 2014

Keywords

Examples

			Some solutions for n=10
..7....9....8....6....7....7....6....3....3....0....0....3....4....2....2....6
.10....0....3....2....9....9...10....0....6....9....6....0....7....4....7....4
..2....8....2....9....7...10....3....4....8....1....9....6....0....1...10....9
..8....3....3...10....2....4....0....0....6....8....0....1....5....0....4....0
..3...10....1....0....9....6....6....3...10....5....9....5....2....1....4....2
.10....4....9....7....8...10....9....2....1....1....0....1....6....4....5....9
		

Crossrefs

Row 6 of A245134.

Formula

Empirical: a(n) = 2*a(n-1) -a(n-2) +2*a(n-3) -4*a(n-4) +4*a(n-5) -5*a(n-6) +4*a(n-7) -5*a(n-8) +8*a(n-9) -5*a(n-10) +4*a(n-11) -5*a(n-12) +4*a(n-13) -4*a(n-14) +2*a(n-15) -a(n-16) +2*a(n-17) -a(n-18).
Empirical g.f.: -x*(-8 -27*x -94*x^2 -188*x^3 -356*x^4 -492*x^5 -640*x^6 -651*x^7 -644*x^8 -492*x^9 -356*x^10 -187*x^11 -96*x^12 -24*x^13 -8*x^14 -2*x^16 +x^17) / ( (1+x+x^2)^2*(x^4+x^3+x^2+x+1)^2*(x-1)^6 ). - R. J. Mathar, Jul 12 2014

A245130 Number of length n 0..4 arrays least squares fitting to a zero slope straight line, with a single point taken as having zero slope.

Original entry on oeis.org

5, 5, 25, 41, 275, 505, 4005, 8193, 68855, 147117, 1277485, 2807617, 24937335, 55854349, 504209895, 1145384915, 10467805625, 24038991995, 221828315005, 513848349931, 4778788229935, 11147995960319, 104342997162795
Offset: 1

Views

Author

R. H. Hardin, Jul 12 2014

Keywords

Comments

Column 4 of A245134

Examples

			Some solutions for n=10
..1....0....2....2....0....2....2....1....2....2....1....0....0....0....0....1
..4....1....2....0....2....0....4....1....3....3....4....4....4....4....4....4
..0....3....1....3....1....2....4....1....1....1....1....3....1....3....3....3
..2....2....4....0....2....0....4....2....3....3....1....0....3....0....2....2
..1....4....2....1....4....1....0....4....0....1....4....3....1....4....3....3
..4....2....2....0....1....0....2....2....0....2....4....2....3....2....3....1
..4....2....0....1....1....2....2....0....3....2....1....3....2....1....4....4
..1....3....3....3....0....0....3....4....1....2....3....1....0....2....2....0
..2....0....1....1....1....2....4....0....3....0....0....3....1....2....0....3
..1....1....3....1....2....1....3....1....2....4....3....1....3....2....3....3
		

A245131 Number of length n 0..5 arrays least squares fitting to a zero slope straight line, with a single point taken as having zero slope.

Original entry on oeis.org

6, 6, 36, 66, 552, 1248, 11856, 29182, 294024, 754712, 7864656, 20741082, 221051304, 594135812, 6435862704, 17543490552, 192393047844, 530178286952, 5870767076544, 16318715568296, 182113708337928, 509795775623836
Offset: 1

Views

Author

R. H. Hardin, Jul 12 2014

Keywords

Comments

Column 5 of A245134

Examples

			Some solutions for n=8
..2....0....3....0....4....3....1....5....5....2....2....2....5....5....0....3
..4....5....5....5....2....3....0....1....1....2....3....1....3....0....5....4
..5....2....4....3....4....1....3....3....1....4....3....0....0....5....1....4
..2....3....4....0....0....4....0....0....4....1....2....3....4....4....3....2
..5....4....5....5....0....1....1....3....2....2....4....4....1....4....3....2
..0....2....4....4....4....3....1....0....3....0....1....1....4....4....2....1
..5....2....2....2....2....1....1....5....3....0....1....3....4....2....3....3
..3....2....5....1....4....4....1....3....3....5....4....0....3....4....1....5
		

A245132 Number of length n 0..6 arrays least squares fitting to a zero slope straight line, with a single point taken as having zero slope.

Original entry on oeis.org

7, 7, 49, 107, 1029, 2687, 29813, 85529, 1006089, 3011889, 36616279, 112656837, 1400740383, 4392222905, 55506486357, 176519274957, 2258424885703, 7260708228631, 93797950158381, 304177053610679, 3960276884051145
Offset: 1

Views

Author

R. H. Hardin, Jul 12 2014

Keywords

Comments

Column 6 of A245134

Examples

			Some solutions for n=8
..3....5....6....0....4....3....4....1....3....1....4....5....6....1....3....0
..1....3....4....2....1....1....2....0....3....4....2....2....2....3....2....5
..6....6....6....2....0....6....4....3....1....6....2....1....4....5....2....5
..3....3....1....3....5....4....0....5....5....3....1....0....3....6....1....3
..0....2....2....4....6....0....4....4....4....6....5....1....4....2....5....2
..0....6....4....5....6....3....3....0....5....3....0....6....5....2....2....3
..1....6....5....0....0....5....6....2....5....1....1....3....4....0....4....5
..6....3....6....0....2....2....1....1....0....4....5....2....4....5....1....1
		

A245133 Number of length n 0..7 arrays least squares fitting to a zero slope straight line, with a single point taken as having zero slope.

Original entry on oeis.org

8, 8, 64, 158, 1728, 5220, 66256, 217336, 2920784, 9995864, 138879808, 488324280, 6938896320, 24865974872, 359129619952, 1305229141238, 19084811616288, 70121208253128, 1035266773525472, 3836844883595142, 57090322839615456
Offset: 1

Views

Author

R. H. Hardin, Jul 12 2014

Keywords

Comments

Column 7 of A245134

Examples

			Some solutions for n=7
..6....2....2....1....5....2....3....4....6....4....5....1....1....4....4....5
..2....5....0....5....4....6....2....0....0....7....4....6....6....3....1....3
..0....4....2....7....1....4....7....7....4....1....7....6....0....0....3....4
..3....2....6....0....5....1....7....1....6....1....6....2....4....4....5....4
..7....6....5....4....1....6....5....2....6....6....2....3....0....4....0....2
..3....4....0....2....7....2....3....7....5....6....5....3....6....4....4....7
..3....2....1....4....3....4....3....1....2....3....6....4....1....2....3....3
		

A245135 Number of length 5 0..n arrays least squares fitting to a zero slope straight line, with a single point taken as having zero slope.

Original entry on oeis.org

8, 39, 112, 275, 552, 1029, 1728, 2781, 4200, 6171, 8688, 11999, 16072, 21225, 27392, 34969, 43848, 54511, 66800, 81291, 97768, 116909, 138432, 163125, 190632, 221859, 256368, 295191, 337800, 385361, 437248, 494769, 557192, 625975, 700272, 781699
Offset: 1

Views

Author

R. H. Hardin, Jul 12 2014

Keywords

Comments

Row 5 of A245134

Examples

			Some solutions for n=10
..8....8....5....6....6....7....5....1....9....5....7....4....4....0....7....4
..0....0....6....3....5....6....6....6....0....2....1....7...10....6....1....8
..3....6....2....7....3....4....6....6...10....2....7....9....0....0....4....0
..6....0...10....1....9....6....4....8....0...10....3....7....2....0....3....0
..5....8....3....7....4....7....6....0....9....1....6....4....8....3....6....8
		

Formula

Empirical: a(n) = 2*a(n-1) +2*a(n-2) -6*a(n-3) +6*a(n-5) -2*a(n-6) -2*a(n-7) +a(n-8).
Empirical: G.f.: -x*(8+23*x+18*x^2+21*x^3+12*x^4-x^5-2*x^6+x^7) / ( (1+x)^3*(x-1)^5 ). - R. J. Mathar, Jul 12 2014

A245137 Number of length 7 0..n arrays least squares fitting to a zero slope straight line, with a single point taken as having zero slope.

Original entry on oeis.org

20, 195, 1064, 4005, 11856, 29813, 66256, 134091, 252060, 446193, 751536, 1214369, 1893612, 2863755, 4217056, 6065957, 8545968, 11819349, 16076760, 21542115, 28475524, 37176625, 47988672, 61303825, 77564708, 97271523, 120985592
Offset: 1

Views

Author

R. H. Hardin, Jul 12 2014

Keywords

Comments

Row 7 of A245134

Examples

			Some solutions for n=8
..4....6....4....0....5....5....4....1....6....5....6....5....3....5....1....3
..2....1....5....7....3....8....3....2....0....1....2....6....7....4....7....7
..1....8....1....6....8....8....7....3....2....6....2....7....0....7....4....1
..6....0....0....3....0....7....5....1....2....7....2....8....1....1....6....1
..5....2....5....2....7....5....0....5....1....7....7....6....8....5....2....6
..0....7....0....6....2....8....2....1....8....5....7....2....0....2....2....0
..4....4....6....2....6....6....7....1....1....2....1....8....5....7....5....6
		

Formula

Empirical: a(n) = a(n-1) +3*a(n-2) -6*a(n-4) -6*a(n-5) +7*a(n-6) +11*a(n-7) -11*a(n-9) -7*a(n-10) +6*a(n-11) +6*a(n-12) -3*a(n-14) -a(n-15) +a(n-16)
Showing 1-7 of 7 results.