cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200181 T(n,k)=Number of -k..k arrays x(0..n-1) of n elements with zero sum and no two consecutive declines, no adjacent equal elements, and no element more than one greater than the previous (random base sawtooth pattern).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 3, 3, 1, 4, 5, 6, 2, 1, 5, 5, 11, 12, 6, 1, 6, 7, 14, 15, 15, 10, 1, 7, 7, 19, 24, 29, 29, 7, 1, 8, 9, 26, 31, 48, 78, 72, 12, 1, 9, 9, 31, 48, 72, 100, 160, 133, 28, 1, 10, 11, 38, 53, 103, 186, 280, 283, 214, 29, 1, 11, 11, 47, 74, 141, 246, 460, 608, 574, 394
Offset: 1

Views

Author

R. H. Hardin Nov 13 2011

Keywords

Comments

Table starts
..1...1...1....1....1....1....1....1.....1.....1.....1.....1.....1.....1.....1
..1...2...3....4....5....6....7....8.....9....10....11....12....13....14....15
..3...3...5....5....7....7....9....9....11....11....13....13....15....15....17
..3...6..11...14...19...26...31...38....47....54....63....74....83....94...107
..2..12..15...24...31...48...53...74....83...108...119...148...159...196...209
..6..15..29...48...72..103..141..186...244...309...385...472...572...685...813
.10..29..78..100..186..246..380..464...686...798..1096..1276..1658..1878..2408
..7..72.160..280..460..700.1010.1430..1954..2592..3392..4348..5470..6826..8392
.12.133.283..608..891.1573.2152.3430..4429..6531..8124.11410.13787.18525.21952
.28.214.574.1094.1934.3247.5014.7552.11060.15511.21380.29006.38248.49885.64294

Examples

			Some solutions for n=7 k=6
..2....6....3...-1....1....3....4....2....1....4....6....5....1....1....5....6
..3....1....4....0....2....1....5....3....0....0....0....4....2....2....0...-1
..1....2....2....1...-1....2....6....1....1....1....1....5....3....3....1....0
..2....3....3....2....0....1...-4....2...-1...-1...-2...-4...-1...-2....2...-1
..3...-4...-4...-1....1....2...-3...-3....0....0...-1...-3....0...-1...-2....0
.-6...-3...-3....0...-2...-5...-2...-2...-1....1....0...-2...-3...-2...-1....1
.-5...-5...-5...-1...-1...-4...-6...-3....0...-5...-4...-5...-2...-1...-5...-5
		

Crossrefs

Row 3 is A063196(n+2)