A200217 Danilov's sequence of y values satisfying 0 < |x^3 - y^2| < sqrt(x) with integer (x,y).
28748141, 182720147509505842286585077, 1176722513851727970194784616032383058302343205, 7578123615032687003769196301877008424487234722410713810234126013
Offset: 1
Keywords
Links
- L. V. Danilov Letter to the editor, Math. Notes 36 (3) (1984) 726.
Crossrefs
Programs
-
Maple
with(numtheory): Di := 125 ; cf := numtheory[cfrac](sqrt(Di),'periodic','quotients') ; for i from 1 to 220 do x := nthnumer(cf,i) ; y := nthdenom(cf,i) ; rr := x^2-Di*y^2 ; if rr = -1 then t := x-5 ; if (t mod 5) = 2 then t := -t-10 ; y := -y ; end if; pk := t ; qk := y ; yM := qk*(pk^2+pk-1) ; yM := abs(yM) ; printf("%d,",yM) ; end if; end do: # R. J. Mathar, Nov 15 2011
-
Mathematica
aa = {}; uu = 682 + 61*Sqrt[125]; Do[vv = Expand[uu^(2*n - 1)]; tt = ((-1)^n vv[[1]] + 57)/125; xx = (5^5*tt^2 - 3000*tt + 719); yy = Round[N[Sqrt[xx^3], 1000]]; dd = xx^3 - yy^2; AppendTo[aa, yy], {n, 1, 5}]; aa (* recurrence formula of R. J. Mathar *) dd = {28748141, 182720147509505842286585077, 1176722513851727970194784616032383058302343205, 7578123615032687003769196301877008424487234722410713810234126013, 48803313311937248954865638168364942372153001387358275397822506563724900540813098269, 314294607902465331119210305427552029679173295887697814635011836442516313036620521777783545650437642949}; a0 = dd[[1]]; a1 = dd[[2]]; a2 = dd[[3]]; a3 = dd[[4]]; a4 = dd[[5]]; a5 = dd[[6]]; Do[a = 6440022564929296994 a5 + 22291834190970757443015664937985 a4 + -41473935220466903245533179036528718020 a3 + 22291834190970757443015664937985 a2 + 6440022564929296994*a1 - a0; a0 = a1; a1 = a2; a2 = a3 = a4; a5 = a6; a6 = a; AppendTo[aa, a], {n, 1, 10}]; aa (* Artur Jasinski, Nov 15 2011 *) CoefficientList[Series[-(61 (-1 + x) (471281 - 39648020168249880312376 x - 417898575330317669831476343067314 x^2 - 39648020168249880312376 x^3 + 471281 x^4))/((1 - 6440026026380244498 x + x^2) (1 - 1860498 x + x^2) (1 + 3461452808002 x + x^2)), {x, 0, 10}], x] (* Artur Jasinski, Nov 16 2011 *) (* Lucas - Fibonacci formula *) aa = {}; Do[If[n == 1, AppendTo[aa, 15 + 9 LucasL[15 (-1 + 2 n)] + 15 LucasL[30 (-1 + 2 n)] - 6 Fibonacci[15 (-1 + 2 n)] + Fibonacci[30 (-1 + 2 n)]], AppendTo[aa, 15/8 Fibonacci[15 (-1 + 2 n)] - 9/20 Fibonacci[30 (-1 + 2 n)] + 1/40 Fibonacci[45 (-1 + 2 n)]]], {n, 1, 10}]; aa (* Artur Jasinski, Nov 18 2011 *)
Formula
Conjecture: a(n) = +6440022564929296994*a(n-1) +22291834190970757443015664937985*a(n-2) -41473935220466903245533179036528718020*a(n-3) +22291834190970757443015664937985*a(n-4) +6440022564929296994*a(n-5) -a(n-6). - R. J. Mathar, Nov 15 2011
Equivalent conjecture g.f.: -61*(z-1) * (471281*z^4 -39648020168249880312376*z^3 -417898575330317669831476343067314*z^2 -39648020168249880312376*z +471281) / ( (z^2+3461452808002*z+1) *(z^2-6440026026380244498*z+1) *(z^2-1860498*z+1) ). - R. J. Mathar, Nov 15 2011
Formula by Lucas and Fibonacci numbers: a(1) = 15+9*L(15)+15*L(30)-6*F(15)+F(30), for n>1 a(n) = (15/8)*F(15(2n-1)) - (9/20)*F(30(2n-1)) + (1/40) * F(45(2n-1)) where F(k) is k-th Fibonacci number A000045(n) and L(k) is k-th Lucas number A000204(n) or A000032(n+1). - Artur Jasinski, Nov 18 2011
Comments