cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200222 G.f. satisfies: A(x) = 1 + Sum_{n>=1} (x*A(x))^(n^2) * (A(x)^n + 1/A(x)^n).

Original entry on oeis.org

1, 2, 4, 12, 42, 164, 688, 3024, 13680, 63110, 295520, 1401012, 6713280, 32470468, 158343504, 777725264, 3843992546, 19104857608, 95419519076, 478668009828, 2410698765472, 12184259877320, 61782045169312, 314202878599696, 1602270787137472, 8191160756085318, 41971595130249968, 215522156779513584
Offset: 0

Views

Author

Paul D. Hanna, Nov 14 2011

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 4*x^2 + 12*x^3 + 42*x^4 + 164*x^5 + 688*x^6 +...
The g.f. A = A(x) may be expressed by the series:
A(x) = 1 + x*A*(A + 1/A) + x^4*A^4*(A^2 + 1/A^2) + x^9*A^9*(A^3 + 1/A^3) + x^16*A^16*(A^4 + 1/A^4) + x^25*A^25*(A^5 + 1/A^5) +...
and by the Jacobi triple product:
A(x) = (1+x)*(1+x*A^2)*(1-x^2*A^2) * (1+x^3*A^2)*(1+x^3*A^4)*(1-x^4*A^4) * (1+x^5*A^4)*(1+x^5*A^6)*(1-x^6*A^6) * (1+x^7*A^6)*(1+x^7*A^8)*(1-x^8*A^8) *...
		

Crossrefs

Programs

  • Mathematica
    (* Calculation of constant d: *) 1/r /. FindRoot[{s == r^2*s^2 * QPochhammer[-1/r, r^2*s^2] * QPochhammer[-1/(r*s^2), r^2*s^2] * QPochhammer[r^2*s^2, r^2*s^2]/((1 + r)*(1 + r*s^2)), 1 - r*s^2 - 2*(1 + r*s^2) * QPolyGamma[0, 1, r^2*s^2] / Log[r^2*s^2] + 2*(1 + r*s^2) * QPolyGamma[0, Log[-1/(r*s^2)] / Log[r^2*s^2], r^2*s^2] / Log[r^2*s^2] + 2*r^2*s^2*((1 + r*s^2)*(Derivative[0, 1][QPochhammer][-1/r, r^2*s^2] / QPochhammer[-1/r, r^2*s^2] + Derivative[0, 1][QPochhammer][-1/(r*s^2), r^2*s^2] / QPochhammer[-1/(r*s^2), r^2*s^2]) + r^2*s * QPochhammer[-1/r, r^2*s^2] * QPochhammer[-1/(r*s^2), r^2*s^2] *  Derivative[0, 1][QPochhammer][r^2*s^2, r^2*s^2] / (1 + r)) == 0}, {r, 1/5}, {s, 2}, WorkingPrecision -> 70] (* Vaclav Kotesovec, Jan 18 2024 *)
  • PARI
    {a(n)=local(A=1+x); for(i=1,n,A=1+sum(m=1, sqrtint(n+1), (A^m +1/(A+x*O(x^n))^m)*(x*A)^(m^2))); polcoeff(A, n)}
    
  • PARI
    /* By Jacobi's Triple Product Identity: */
    {a(n)=local(A=1+x); for(i=1,n,A=prod(m=1, n\2+1, (1+x^(2*m-1)*A^(2*m-2)+x*O(x^n))*(1+x^(2*m-1)*A^(2*m))*(1-x^(2*m)*A^(2*m)) )); polcoeff(A, n)}

Formula

By the Jacobi triple product identity, g.f. A(x) satisfies:
(1) A(x) = Product_{n>=1} (1 + x^(2*n-1)*A(x)^(2*n-2)) * (1 + x^(2*n-1)*A(x)^(2*n)) * (1 - x^(2*n)*A(x)^(2*n)).
Let G(x) be the g.f. of A190791, then A(x) satisfies:
(2) A(x) = (1/x)*Series_Reversion(x/G(x)),
(3) A(x) = G(x*A(x)) and G(x) = A(x/G(x)),
(4) a(n) = [x^n] G(x)^(n+1)/(n+1),
where G(x) = 1 + Sum_{n>=1} x^(n^2) * (G(x)^n + 1/G(x)^n).
a(n) ~ c * d^n / n^(3/2), where d = 5.42800145666083947972618... and c = 0.45497910593346577587... - Vaclav Kotesovec, Sep 04 2017