A200223 Decimal expansion of least x satisfying 3*x^2 - cos(x) = 2*sin(x), negated.
3, 2, 3, 1, 1, 4, 3, 3, 3, 8, 8, 6, 2, 2, 6, 2, 8, 4, 5, 3, 5, 6, 3, 7, 0, 4, 9, 2, 3, 1, 1, 7, 1, 4, 9, 1, 1, 9, 9, 1, 6, 3, 6, 2, 8, 8, 2, 6, 6, 1, 5, 9, 4, 3, 8, 5, 8, 7, 5, 7, 8, 7, 3, 5, 7, 6, 5, 0, 5, 3, 8, 8, 8, 6, 0, 1, 7, 1, 0, 9, 8, 2, 8, 0, 4, 8, 2, 3, 7, 4, 7, 7, 2, 7, 6, 2, 7, 0, 6
Offset: 0
Examples
least x: -0.3231143338862262845356370492311714... greatest x: 0.84890518832952236173456381626613...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 3; b = -1; c = 2; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.33, -.32}, WorkingPrecision -> 110] RealDigits[r] (* A200223 *) r = x /. FindRoot[f[x] == g[x], {x, .84, .85}, WorkingPrecision -> 110] RealDigits[r] (* A200224 *)
-
PARI
a=3; b=-1; c=2; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 30 2018
Comments