A200227 Decimal expansion of least x satisfying 3*x^2 - cos(x) = 4*sin(x), negated.
2, 1, 2, 2, 0, 7, 2, 6, 1, 5, 9, 7, 9, 1, 8, 2, 9, 8, 9, 7, 8, 2, 3, 7, 4, 0, 5, 0, 1, 0, 3, 7, 5, 4, 0, 3, 7, 3, 2, 0, 7, 9, 1, 5, 7, 5, 0, 6, 1, 9, 7, 1, 1, 7, 0, 2, 4, 0, 1, 5, 1, 2, 3, 5, 4, 5, 2, 5, 4, 6, 3, 6, 4, 7, 4, 6, 8, 2, 1, 5, 3, 4, 7, 1, 5, 8, 9, 5, 1, 0, 6, 7, 2, 1, 5, 0, 0, 5, 7
Offset: 0
Examples
least x: -0.21220726159791829897823740501037540... greatest x: 1.164720132600086548144173603917629...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 3; b = -1; c = 4; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] r = x /.FindRoot[f[x] == g[x], {x, -.22, -.21}, WorkingPrecision -> 110] RealDigits[r] (* A200227 *) r = x /. FindRoot[f[x] == g[x], {x, 1.1, 1.2}, WorkingPrecision -> 110] RealDigits[r] (* A200228 *)
-
PARI
a=3; b=-1; c=4; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 30 2018
Comments