A200229 Decimal expansion of least x satisfying 3*x^2 - 2*cos(x) = sin(x), negated.
6, 0, 1, 0, 8, 4, 6, 0, 8, 5, 4, 4, 7, 4, 4, 5, 7, 8, 0, 8, 4, 0, 9, 1, 5, 7, 5, 7, 9, 3, 7, 9, 2, 4, 3, 7, 0, 9, 6, 4, 9, 2, 5, 9, 9, 3, 5, 3, 1, 9, 7, 6, 9, 7, 2, 6, 3, 5, 3, 5, 4, 8, 0, 6, 8, 5, 1, 4, 2, 3, 0, 5, 2, 9, 4, 8, 1, 1, 0, 4, 5, 6, 6, 1, 1, 3, 2, 2, 1, 0, 5, 2, 6, 2, 2, 3, 1, 5, 1
Offset: 0
Examples
least x: -0.6010846085447445780840915757937924370... greatest x: 0.83362047030745407827417017871253212...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 3; b = -2; c = 1; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.61, -.60}, WorkingPrecision -> 110] RealDigits[r] (* A200229 *) r = x /. FindRoot[f[x] == g[x], {x, .83, .84}, WorkingPrecision -> 110] RealDigits[r] (* A200230 *)
-
PARI
a=3; b=-2; c=1; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 30 2018
Comments