A200233 Decimal expansion of least x satisfying 3*x^2 - 2*cos(x) = 3*sin(x), negated.
4, 3, 2, 0, 5, 2, 7, 6, 0, 4, 2, 5, 7, 2, 3, 1, 3, 1, 9, 9, 6, 3, 8, 3, 6, 0, 7, 4, 5, 5, 3, 7, 2, 2, 8, 0, 5, 2, 2, 3, 5, 0, 2, 1, 7, 0, 6, 9, 8, 9, 9, 8, 4, 6, 3, 1, 2, 6, 8, 8, 5, 4, 9, 9, 4, 2, 0, 0, 8, 9, 3, 8, 0, 5, 2, 1, 6, 6, 7, 1, 4, 8, 1, 7, 7, 7, 5, 4, 4, 3, 8, 3, 6, 7, 9, 0, 7, 0, 4
Offset: 0
Examples
least x: -0.432052760425723131996383607455372280... greatest x: 1.0929613126196942696433829125566221...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 3; b = -2; c = 3; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.44, -.43}, WorkingPrecision -> 110] RealDigits[r] (* A200233 *) r = x /. FindRoot[f[x] == g[x], {x, 1.08, 1.09}, WorkingPrecision -> 110] RealDigits[r] (* A200234 *)
-
PARI
a=3; b=-2; c=3; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 30 2018
Comments