A200236 Decimal expansion of greatest x satisfying 3*x^2 - 2*cos(x) = 4*sin(x).
1, 2, 1, 7, 2, 4, 5, 4, 2, 8, 9, 4, 5, 4, 5, 9, 0, 2, 7, 6, 9, 3, 2, 4, 5, 8, 6, 3, 5, 4, 5, 6, 0, 7, 5, 9, 8, 0, 1, 4, 4, 3, 6, 1, 3, 7, 3, 3, 1, 6, 6, 6, 9, 9, 0, 4, 7, 4, 1, 7, 5, 2, 2, 5, 7, 9, 2, 2, 5, 5, 9, 2, 8, 8, 9, 6, 7, 8, 5, 5, 1, 4, 3, 9, 4, 3, 5, 4, 6, 8, 8, 7, 5, 3, 5, 3, 3, 4, 4
Offset: 1
Examples
least x: -0.37112234946927280533419999688093... greatest x: 1.217245428945459027693245863545...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 3; b = -2; c = 4; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.38, -.37}, WorkingPrecision -> 110] RealDigits[r] (* A200235 *) r = x /. FindRoot[f[x] == g[x], {x, 1.2, 1.3}, WorkingPrecision -> 110] RealDigits[r] (* A200236 *)
-
PARI
a=3; b=-2; c=4; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 05 2018
Comments