cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A200252 Number of 0..n arrays x(0..2) of 3 elements with each no smaller than the sum of its previous elements modulo (n+1).

Original entry on oeis.org

5, 12, 26, 45, 75, 112, 164, 225, 305, 396, 510, 637, 791, 960, 1160, 1377, 1629, 1900, 2210, 2541, 2915, 3312, 3756, 4225, 4745, 5292, 5894, 6525, 7215, 7936, 8720, 9537, 10421, 11340, 12330, 13357, 14459, 15600, 16820, 18081, 19425, 20812, 22286, 23805
Offset: 1

Views

Author

R. H. Hardin, Nov 15 2011

Keywords

Comments

Row 3 of A200251.
a(n) = A199771(n+1). - Reinhard Zumkeller, Nov 23 2011

Examples

			Some solutions for n=6:
  2  0  0  3  3  1  4  0  1  3  0  3  0  2  1  3
  6  5  3  6  3  1  5  2  4  6  6  5  0  5  2  4
  2  6  6  2  6  4  4  2  6  5  6  5  6  5  4  0
		

Formula

a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
From Colin Barker, Feb 19 2018: (Start)
G.f.: x*(5 + 2*x - 3*x^2 + x^3 + 2*x^4 - x^5) / ((1 - x)^4*(1 + x)^2).
a(n) = (n^3 + 5*n^2 + 8*n + 4) / 4 for n even.
a(n) = (n^3 + 5*n^2 + 9*n + 5) / 4 for n odd.
(End)

A200253 Number of 0..n arrays x(0..3) of 4 elements with each no smaller than the sum of its previous elements modulo (n+1).

Original entry on oeis.org

8, 24, 69, 135, 267, 448, 750, 1125, 1690, 2376, 3339, 4459, 5957, 7680, 9900, 12393, 15516, 19000, 23265, 27951, 33583, 39744, 47034, 54925, 64142, 74088, 85575, 97875, 111945, 126976, 144024, 162129, 182512, 204120, 228285, 253783, 282131, 312000
Offset: 1

Views

Author

R. H. Hardin, Nov 15 2011

Keywords

Comments

Row 4 of A200251.

Examples

			Some solutions for n=6:
..4....4....0....1....2....0....1....4....0....1....3....2....1....3....2....2
..4....6....2....1....6....1....6....5....0....3....5....2....1....6....6....6
..6....5....5....6....1....2....0....6....2....5....1....5....6....3....2....4
..1....6....3....6....2....4....3....3....5....5....3....4....5....6....3....6
		

Crossrefs

Cf. A200251.

Formula

Empirical: a(n) = 2*a(n-1) - 2*a(n-3) + 3*a(n-4) - 4*a(n-5) + 4*a(n-7) - 3*a(n-8) + 2*a(n-9) - 2*a(n-11) + a(n-12).
Empirical g.f.: x*(8 + 8*x + 21*x^2 + 13*x^3 + 21*x^4 + 12*x^5 + 13*x^6 - 2*x^7 + 3*x^8 - 2*x^10 + x^11) / ((1 - x)^5*(1 + x)^3*(1 + x^2)^2). - Colin Barker, Feb 23 2018

A200254 Number of 0..n arrays x(0..4) of 5 elements with each no smaller than the sum of its previous elements modulo (n+1).

Original entry on oeis.org

13, 48, 181, 405, 951, 1792, 3434, 5625, 9365, 14256, 21855, 31213, 44863, 61440, 84500, 111537, 147789, 190000, 244905, 307461, 386903, 476928, 588990, 714025, 867061, 1037232, 1242451, 1468125, 1736895, 2031616, 2378792, 2756193, 3196493
Offset: 1

Views

Author

R. H. Hardin Nov 15 2011

Keywords

Comments

Row 5 of A200251

Examples

			Some solutions for n=6
..4....5....5....1....4....1....0....0....6....2....3....1....1....4....0....2
..6....6....5....1....6....3....5....1....6....2....6....2....1....6....5....4
..4....6....6....2....4....6....5....2....6....5....3....6....5....4....5....6
..1....6....5....4....1....3....4....4....6....3....6....6....0....1....6....5
..5....3....3....3....1....6....5....1....4....5....5....5....6....6....4....4
		

Formula

Empirical: a(n) = 2*a(n-1) -2*a(n-3) +2*a(n-4) -2*a(n-5) +2*a(n-7) +a(n-8) -4*a(n-9) +4*a(n-11) -4*a(n-12) +4*a(n-13) -4*a(n-15) +a(n-16) +2*a(n-17) -2*a(n-19) +2*a(n-20) -2*a(n-21) +2*a(n-23) -a(n-24)

A200249 Number of 0..5 arrays x(0..n-1) of n elements with each no smaller than the sum of its previous elements modulo 6.

Original entry on oeis.org

6, 21, 75, 267, 951, 3387, 12063, 42963, 153015, 544971, 1940943, 6912771, 24620199, 87686139, 312298815, 1112268723, 3961403799, 14108748843, 50249054127, 178964660067, 637392088455, 2270105585499, 8085100933407, 28795513971219
Offset: 1

Views

Author

R. H. Hardin, Nov 15 2011

Keywords

Comments

Column 5 of A200251.

Examples

			Some solutions for n=6:
..2....2....3....2....0....0....3....3....2....3....3....3....1....0....1....3
..5....4....5....5....1....3....3....4....5....4....4....4....1....0....1....3
..2....3....5....1....5....5....2....5....4....5....2....3....2....5....2....0
..5....3....1....2....2....4....4....5....5....1....5....5....4....5....5....2
..5....2....5....5....3....4....5....5....4....3....5....4....2....5....4....4
..3....4....5....4....5....5....5....5....5....4....2....4....4....3....5....5
		

Crossrefs

Cf. A200251.

Formula

Empirical: a(n) = 3*a(n-1) +2*a(n-2).
Conjectures from Colin Barker, May 20 2018: (Start)
G.f.: 3*x*(2 + x) / (1 - 3*x - 2*x^2).
a(n) = (3*2^(-2-n)*((3-sqrt(17))^n*(-5+sqrt(17)) + (3+sqrt(17))^n*(5+sqrt(17)))) / sqrt(17).
(End)

A200250 Number of 0..7 arrays x(0..n-1) of n elements with each no smaller than the sum of its previous elements modulo 8.

Original entry on oeis.org

8, 36, 164, 750, 3434, 15724, 71970, 329455, 1508139, 6903702, 31602661, 144665637, 662227235, 3031438038, 13876832881, 63523149100, 290786125630, 1331114279973, 6093362338144, 27893220846536, 127685131134366, 584496598744029
Offset: 1

Views

Author

R. H. Hardin, Nov 15 2011

Keywords

Comments

Column 7 of A200251.

Examples

			Some solutions for n=6:
..3....1....6....3....2....3....2....1....0....6....3....3....0....7....2....1
..6....3....7....7....6....5....6....4....3....6....7....5....2....7....6....4
..7....6....7....7....4....2....3....5....6....7....6....1....7....7....3....5
..5....2....4....1....5....2....6....7....3....6....6....1....5....6....6....6
..5....5....1....3....6....5....1....3....7....2....6....3....6....7....5....2
..7....5....5....6....7....3....5....4....5....7....5....6....7....7....7....7
		

Crossrefs

Cf. A200251.

Formula

Empirical: a(n) = a(n-1) +9*a(n-2) +24*a(n-3) +36*a(n-4) +35*a(n-5) +21*a(n-6) +7*a(n-7) +a(n-8).
Empirical g.f.: x*(2 + x)*(2 + 2*x + x^2)*(2 + 4*x + 6*x^2 + 4*x^3 + x^4) / (1 - x - 9*x^2 - 24*x^3 - 36*x^4 - 35*x^5 - 21*x^6 - 7*x^7 - x^8). - Colin Barker, May 20 2018

A200255 Number of 0..n arrays x(0..5) of 6 elements with each no smaller than the sum of its previous elements modulo (n+1).

Original entry on oeis.org

21, 96, 476, 1215, 3387, 7168, 15724, 28125, 51895, 85536, 143052, 218491, 337869, 491520, 721208, 1003833, 1407681, 1900000, 2578060, 3382071, 4457431, 5723136, 7375716, 9282325, 11720787, 14521248, 18038972, 22021875, 26948985, 32505856
Offset: 1

Views

Author

R. H. Hardin Nov 15 2011

Keywords

Comments

Row 6 of A200251

Examples

			Some solutions for n=6
..0....5....0....3....2....4....0....0....4....1....3....3....2....1....2....4
..3....6....2....5....6....6....5....1....5....1....6....4....6....1....3....5
..5....5....5....1....3....4....5....1....2....5....5....4....3....5....6....2
..1....2....2....5....4....0....4....3....6....0....3....5....6....4....5....6
..3....4....5....5....3....3....3....5....5....5....6....5....4....6....2....6
..5....3....4....6....5....5....3....5....3....6....3....0....4....3....5....3
		

Formula

Empirical: a(n) = 2*a(n-1) -2*a(n-3) +2*a(n-4) -2*a(n-5) +2*a(n-7) -2*a(n-9) +2*a(n-11) -2*a(n-12) +2*a(n-13) -2*a(n-15) +3*a(n-16) -4*a(n-17) +4*a(n-19) -4*a(n-20) +4*a(n-21) -4*a(n-23) +4*a(n-25) -4*a(n-27) +4*a(n-28) -4*a(n-29) +4*a(n-31) -3*a(n-32) +2*a(n-33) -2*a(n-35) +2*a(n-36) -2*a(n-37) +2*a(n-39) -2*a(n-41) +2*a(n-43) -2*a(n-44) +2*a(n-45) -2*a(n-47) +a(n-48)

A200256 Number of 0..n arrays x(0..6) of 7 elements with each no smaller than the sum of its previous elements modulo (n+1).

Original entry on oeis.org

34, 192, 1252, 3645, 12063, 28672, 71970, 140625, 287570, 513216, 936348, 1529437, 2544535, 3932160, 6155908, 9034497, 13408074, 19000000, 27138660, 37202781, 51353159, 68677632, 92363430, 120670225, 158439658, 203297472, 261905308
Offset: 1

Views

Author

R. H. Hardin Nov 15 2011

Keywords

Comments

Row 7 of A200251

Examples

			Some solutions for n=6
..0....4....0....3....0....3....0....4....2....1....2....3....3....3....4....4
..4....6....0....5....1....5....2....5....5....6....6....6....4....6....6....6
..4....4....0....2....6....3....2....6....2....1....2....2....2....5....4....4
..1....1....2....3....0....4....4....2....3....6....6....6....5....4....4....2
..5....1....5....6....3....1....1....5....5....0....6....5....2....5....5....5
..5....5....2....5....4....3....5....1....3....0....2....3....4....5....5....1
..5....3....4....6....0....6....5....5....6....3....6....4....6....0....4....5
		

Formula

Empirical: a(n) = 2*a(n-1) -2*a(n-3) +2*a(n-4) -2*a(n-5) +2*a(n-7) -2*a(n-9) +2*a(n-11) -2*a(n-12) +2*a(n-13) -2*a(n-15) +2*a(n-16) -2*a(n-17) +2*a(n-19) -2*a(n-20) +2*a(n-21) -2*a(n-23) +2*a(n-25) -2*a(n-27) +2*a(n-28) -2*a(n-29) +2*a(n-31) +a(n-32) -4*a(n-33) +4*a(n-35) -4*a(n-36) +4*a(n-37) -4*a(n-39) +4*a(n-41) -4*a(n-43) +4*a(n-44) -4*a(n-45) +4*a(n-47) -4*a(n-48) +4*a(n-49) -4*a(n-51) +4*a(n-52) -4*a(n-53) +4*a(n-55) -4*a(n-57) +4*a(n-59) -4*a(n-60) +4*a(n-61) -4*a(n-63) +a(n-64) +2*a(n-65) -2*a(n-67) +2*a(n-68) -2*a(n-69) +2*a(n-71) -2*a(n-73) +2*a(n-75) -2*a(n-76) +2*a(n-77) -2*a(n-79) +2*a(n-80) -2*a(n-81) +2*a(n-83) -2*a(n-84) +2*a(n-85) -2*a(n-87) +2*a(n-89) -2*a(n-91) +2*a(n-92) -2*a(n-93) +2*a(n-95) -a(n-96)
Showing 1-7 of 7 results.