A200277 Decimal expansion of least x satisfying 3*x^2 - 4*cos(x) = sin(x), negated.
8, 1, 7, 7, 1, 5, 2, 1, 8, 7, 9, 2, 3, 0, 4, 5, 4, 5, 1, 1, 1, 9, 1, 4, 5, 4, 2, 0, 8, 3, 6, 5, 7, 7, 7, 1, 5, 3, 9, 3, 9, 1, 6, 5, 1, 3, 2, 7, 1, 2, 0, 1, 5, 3, 7, 2, 7, 9, 0, 7, 5, 0, 9, 9, 8, 6, 2, 4, 1, 4, 4, 1, 9, 7, 2, 7, 4, 5, 8, 0, 2, 7, 4, 7, 1, 3, 8, 1, 9, 8, 3, 6, 2, 7, 8, 7, 2, 9, 0
Offset: 0
Examples
least x: -0.81771521879230454511191454208365777... greatest x: 1.000303639283590185187225035744180...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 3; b = -4; c = 1; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.82, -.81}, WorkingPrecision -> 110] RealDigits[r] (* A200277 *) r = x /. FindRoot[f[x] == g[x], {x, 1.0, 1.1}, WorkingPrecision -> 110] RealDigits[r] (* A200278 *)
-
PARI
a=3; b=-4; c=1; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 05 2018
Comments