A200281 Decimal expansion of least x satisfying 3*x^2 - 4*cos(x) = 3*sin(x), negated.
6, 6, 1, 5, 7, 2, 3, 7, 8, 1, 8, 7, 9, 8, 9, 9, 9, 2, 0, 6, 2, 8, 9, 9, 3, 0, 7, 3, 2, 8, 9, 8, 9, 3, 6, 5, 5, 7, 5, 7, 4, 9, 6, 3, 1, 7, 5, 0, 6, 4, 6, 6, 2, 7, 2, 2, 8, 7, 0, 8, 1, 1, 3, 0, 6, 7, 7, 3, 1, 5, 1, 9, 9, 2, 2, 4, 8, 9, 9, 0, 3, 6, 0, 5, 1, 0, 4, 4, 8, 7, 6, 9, 7, 6, 4, 8, 7, 1, 4
Offset: 0
Examples
least x: -0.6615723781879899920628993073289... greatest x: 1.19240455007681565929009549661...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 3; b = -4; c = 3; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.67, -.66}, WorkingPrecision -> 110] RealDigits[r] (* A200281 *) r = x /. FindRoot[f[x] == g[x], {x, 1.1, 1.2}, WorkingPrecision -> 110] RealDigits[r] (* A200282 *)
-
PARI
a=3; b=-4; c=3; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 07 2018
Comments