A200284 Decimal expansion of greatest x satisfying 3*x^2 - 4*cos(x) = 4*sin(x), negated.
1, 2, 8, 6, 1, 2, 8, 0, 2, 6, 7, 4, 5, 9, 0, 9, 9, 6, 5, 2, 7, 9, 1, 5, 1, 1, 2, 6, 1, 4, 6, 3, 7, 9, 4, 2, 3, 5, 1, 2, 6, 4, 2, 7, 5, 6, 5, 2, 8, 4, 4, 1, 9, 4, 6, 0, 0, 6, 6, 9, 7, 2, 2, 3, 6, 1, 3, 0, 5, 8, 2, 2, 0, 3, 8, 5, 4, 0, 6, 3, 0, 8, 7, 8, 1, 6, 4, 5, 6, 4, 8, 4, 3, 6, 3, 8, 2, 8, 2
Offset: 1
Examples
least x: -0.5959294541202234263223480673526214... greatest x: 1.28612802674590996527915112614637...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 3; b = -4; c = 4; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.6, -.59}, WorkingPrecision -> 110] RealDigits[r] (* A200283 *) r = x /. FindRoot[f[x] == g[x], {x, 1.2, 1.3}, WorkingPrecision -> 110] RealDigits[r] (* A200284 *)
-
PARI
a=3; b=-4; c=4; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 07 2018
Comments