A200285 Decimal expansion of least x satisfying 4*x^2 - cos(x) = sin(x), negated.
3, 7, 5, 4, 0, 3, 6, 4, 9, 9, 6, 1, 1, 3, 9, 8, 4, 8, 6, 9, 2, 9, 5, 7, 7, 3, 5, 8, 3, 7, 1, 5, 4, 4, 2, 9, 2, 9, 9, 7, 6, 1, 4, 4, 3, 4, 6, 5, 7, 3, 0, 8, 5, 7, 0, 2, 2, 9, 3, 2, 6, 0, 8, 6, 4, 5, 3, 1, 4, 7, 9, 1, 5, 9, 0, 0, 2, 3, 7, 6, 2, 0, 0, 4, 8, 2, 8, 6, 4, 7, 6, 2, 8, 2, 4, 9, 1, 2, 5
Offset: 0
Examples
least x: -0.37540364996113984869295773583715442... greatest x: 0.588851742675041179999659714644848...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 4; b = -1; c = 1; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.38, -.37}, WorkingPrecision -> 110] RealDigits[r] (* A200285 *) r = x /. FindRoot[f[x] == g[x], {x, .58, .59}, WorkingPrecision -> 110] RealDigits[r] (* A200286 *)
-
PARI
a=4; b=-1; c=1; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 07 2018
Comments