A200287 Decimal expansion of least x satisfying 4*x^2 - cos(x) = 2*sin(x), negated.
3, 0, 0, 9, 3, 1, 8, 8, 5, 4, 2, 1, 9, 0, 2, 3, 7, 0, 0, 3, 1, 0, 0, 6, 2, 4, 0, 7, 1, 7, 5, 1, 4, 9, 5, 6, 3, 1, 9, 8, 7, 9, 8, 0, 3, 3, 2, 2, 2, 6, 8, 8, 4, 5, 0, 8, 3, 5, 0, 3, 3, 3, 7, 2, 3, 5, 3, 1, 6, 0, 8, 9, 4, 3, 2, 6, 1, 3, 9, 1, 9, 2, 8, 1, 6, 6, 5, 7, 1, 9, 5, 2, 0, 1, 6, 2, 3, 0, 2
Offset: 0
Examples
least x: -0.300931885421902370031006240717514956... greatest x: 0.7193842604598758321075524115913806...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 4; b = -1; c = 2; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.31, -.30}, WorkingPrecision -> 110] RealDigits[r] (* A200287 *) r = x /. FindRoot[f[x] == g[x], {x, .71, .72}, WorkingPrecision -> 110] RealDigits[r] (* A200288 *)
-
PARI
a=4; b=-1; c=2; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 07 2018
Comments