A200289 Decimal expansion of least x satisfying 4*x^2 - cos(x) = 3*sin(x), negated.
2, 4, 5, 4, 6, 3, 0, 3, 1, 8, 3, 0, 8, 2, 4, 2, 4, 2, 4, 7, 0, 6, 1, 7, 6, 6, 0, 4, 7, 0, 7, 3, 8, 4, 5, 8, 1, 6, 4, 2, 5, 7, 7, 4, 2, 9, 7, 6, 4, 7, 9, 0, 9, 3, 7, 0, 2, 2, 5, 4, 1, 0, 9, 6, 0, 5, 9, 1, 2, 8, 3, 6, 7, 0, 6, 9, 3, 3, 6, 3, 2, 7, 8, 1, 3, 7, 7, 8, 9, 3, 8, 6, 6, 5, 6, 9, 8, 4, 6
Offset: 0
Examples
least x: -0.2454630318308242424706176604707384581... greatest x: 0.85425847729971214786694703263536193...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 4; b = -1; c = 3; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.25, -.24}, WorkingPrecision -> 110] RealDigits[r] (* A200289 *) r = x /. FindRoot[f[x] == g[x], {x, .85, .86}, WorkingPrecision -> 110] RealDigits[r] (* A200290 *)
-
PARI
a=4; b=-1; c=3; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 07 2018
Comments