A200292 Decimal expansion of greatest x satisfying 4*x^2 - cos(x) = 4*sin(x).
9, 8, 5, 7, 7, 6, 3, 8, 1, 7, 0, 3, 9, 0, 0, 4, 5, 5, 0, 3, 0, 7, 9, 4, 0, 5, 3, 8, 7, 9, 8, 1, 9, 7, 0, 2, 6, 4, 6, 4, 5, 4, 7, 6, 8, 0, 5, 5, 7, 6, 8, 2, 0, 7, 6, 9, 5, 1, 3, 0, 6, 1, 3, 2, 4, 7, 8, 8, 7, 1, 1, 4, 4, 3, 5, 5, 7, 6, 3, 0, 7, 3, 6, 6, 1, 0, 7, 1, 6, 8, 3, 1, 1, 7, 4, 8, 2, 1, 5
Offset: 0
Examples
least x: -0.2044255015377807131364929398797955... greatest x: 0.98577638170390045503079405387981...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 4; b = -1; c = 4; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.21, -.20}, WorkingPrecision -> 110] RealDigits[r] (* A200291 *) r = x /. FindRoot[f[x] == g[x], {x, .98, .99}, WorkingPrecision -> 110] RealDigits[r] (* A200292 *)
-
PARI
a=4; b=-1; c=4; solve(x=0, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 08 2018
Comments