A200294 Decimal expansion of greatest x satisfying 4*x^2 - 2*cos(x) = sin(x).
7, 3, 3, 9, 7, 2, 6, 2, 7, 9, 4, 0, 2, 8, 9, 6, 1, 4, 3, 3, 4, 5, 0, 5, 0, 5, 6, 0, 0, 3, 9, 2, 9, 9, 2, 2, 0, 8, 5, 4, 5, 1, 3, 5, 6, 9, 6, 3, 5, 3, 9, 8, 1, 5, 0, 7, 6, 2, 5, 5, 4, 7, 2, 6, 5, 7, 2, 8, 2, 7, 5, 2, 5, 7, 8, 5, 8, 9, 3, 8, 3, 1, 7, 1, 7, 4, 0, 3, 8, 2, 6, 2, 1, 8, 4, 2, 6, 9, 5
Offset: 0
Examples
least x: -0.5455973884814757395042148847857... greatest x: 0.73397262794028961433450505600...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 4; b = -2; c = 1; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.55, -.54}, WorkingPrecision -> 110] RealDigits[r] (* A200293 *) r = x /. FindRoot[f[x] == g[x], {x, .73, .74}, WorkingPrecision -> 110] RealDigits[r] (* A200294 *)
-
PARI
a=4; b=-2; c=1; solve(x=0, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 08 2018
Comments