A200295 Decimal expansion of least x satisfying 4*x^2 - 2*cos(x) = 3*sin(x), negated.
4, 0, 5, 0, 0, 7, 1, 4, 9, 6, 7, 3, 3, 0, 6, 8, 1, 3, 5, 3, 0, 1, 0, 1, 2, 5, 6, 3, 6, 7, 3, 0, 1, 2, 9, 4, 7, 4, 7, 4, 6, 9, 7, 5, 9, 6, 2, 6, 2, 8, 2, 3, 1, 1, 5, 4, 6, 1, 0, 3, 4, 9, 1, 3, 8, 3, 3, 9, 0, 8, 0, 9, 3, 5, 8, 3, 8, 0, 4, 1, 8, 0, 5, 9, 0, 0, 8, 1, 2, 7, 9, 6, 0, 9, 3, 2, 7, 2, 3
Offset: 0
Examples
least x: -0.40500714967330681353010125636730... greatest x: 0.949145719423009844818919670857...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 4; b = -2; c = 3; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.41, -.40}, WorkingPrecision -> 110] RealDigits[r] (* A200295 *) r = x /. FindRoot[f[x] == g[x], {x, .94, .95}, WorkingPrecision -> 110] RealDigits[r] (* A200296 *)
-
PARI
a=4; b=-2; c=3; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 08 2018
Comments