A200298 Decimal expansion of greatest x satisfying 4*x^2-3*cos(x)=2*sin(x).
9, 2, 2, 6, 9, 7, 3, 3, 6, 5, 4, 8, 3, 1, 4, 7, 9, 4, 6, 0, 3, 9, 0, 6, 5, 5, 1, 7, 9, 1, 5, 6, 2, 3, 6, 8, 8, 9, 4, 9, 0, 9, 0, 4, 9, 0, 7, 7, 2, 5, 7, 0, 5, 8, 6, 7, 3, 2, 2, 9, 0, 3, 3, 1, 1, 2, 1, 4, 2, 4, 9, 0, 9, 0, 3, 3, 9, 7, 3, 4, 8, 4, 2, 3, 0, 2, 3, 5, 1, 4, 5, 3, 8, 5, 5, 6, 8, 7, 4
Offset: 0
Examples
least x: -0.58847086928685261649979864856036... greatest x: 0.922697336548314794603906551791...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 4; b = -3; c = 2; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.59, -.58}, WorkingPrecision -> 110] RealDigits[r] (* A200297 *) r = x /. FindRoot[f[x] == g[x], {x, .92, .93}, WorkingPrecision -> 110] RealDigits[r] (* A200298 *)
-
PARI
a=4; b=-3; c=2; solve(x=.92, .93, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018
Comments