A200301 Decimal expansion of least x satisfying 4*x^2 - 3*cos(x) = 3*sin(x), negated.
5, 2, 3, 7, 7, 4, 1, 5, 6, 7, 5, 3, 2, 5, 5, 7, 2, 1, 7, 1, 7, 8, 4, 0, 4, 9, 6, 7, 3, 9, 4, 4, 5, 2, 8, 5, 3, 9, 0, 6, 0, 2, 4, 7, 1, 1, 0, 3, 1, 6, 0, 9, 9, 7, 1, 6, 8, 4, 8, 7, 8, 1, 5, 3, 9, 7, 3, 9, 2, 9, 3, 2, 3, 9, 5, 9, 6, 2, 6, 5, 2, 2, 3, 5, 6, 8, 4, 2, 6, 0, 2, 5, 3, 5, 8, 7, 5, 3, 6
Offset: 0
Examples
least x: -0.52377415675325572171784049673944... greatest x: 1.01614395672355873379945590129...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 4; b = -3; c = 3; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.54, -.51}, WorkingPrecision -> 110] RealDigits[r] (* A200297 *) r = x /. FindRoot[f[x] == g[x], {x, 1, 1.03}, WorkingPrecision -> 110] RealDigits[r] (* A200298 *)
-
PARI
a=4; b=-3; c=3; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 08 2018
Comments