A200304 Decimal expansion of greatest x satisfying 4*x^2 - 3*cos(x) = 4*sin(x).
1, 1, 0, 8, 8, 1, 1, 8, 8, 2, 9, 7, 1, 7, 2, 7, 6, 2, 1, 8, 5, 8, 4, 9, 5, 3, 5, 2, 2, 8, 5, 8, 9, 1, 7, 2, 5, 5, 4, 0, 0, 8, 9, 9, 4, 0, 1, 9, 4, 8, 5, 0, 6, 8, 1, 9, 7, 6, 4, 9, 9, 3, 1, 5, 7, 1, 7, 8, 4, 8, 7, 1, 3, 8, 8, 5, 5, 5, 9, 5, 8, 9, 9, 7, 8, 4, 3, 9, 2, 3, 8, 0, 5, 3, 6, 3, 5, 7, 8
Offset: 1
Examples
least x: -0.4676436322290565342035400494771... greatest x: 1.10881188297172762185849535228...
Links
Crossrefs
Cf. A199949.
Programs
-
Mathematica
a = 4; b = -3; c = 4; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, -.47, -.46}, WorkingPrecision -> 110] RealDigits[r] (* A200303 *) r = x /. FindRoot[f[x] == g[x], {x, 1.1, 1.2}, WorkingPrecision -> 110] RealDigits[r] (* A200304 *)
-
PARI
a=4; b=-3; c=4; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 08 2018
Comments