A200320 E.g.f. satisfies: A(x) = x-1 + exp(A(x)^2/2).
1, 1, 3, 18, 150, 1590, 20580, 314790, 5554710, 111071520, 2482076520, 61301435580, 1658129152680, 48749053413060, 1547849157554700, 52785934927525800, 1924269399236784600, 74672595203551745400, 3073314600152521124400, 133716009695044269893400, 6132253708189762323370200
Offset: 1
Keywords
Examples
E.g.f.: A(x) = x + x^2/2! + 3*x^3/3! + 18*x^4/4! + 150*x^5/5! +... where A(1+x - exp(x^2/2)) = x and A(x) = x-1 + exp(A(x)^2/2).
Programs
-
Mathematica
Rest[CoefficientList[InverseSeries[Series[1 - E^(x^2/2) + x,{x,0,20}],x],x] * Range[0,20]!] (* Vaclav Kotesovec, Jan 10 2014 *)
-
PARI
{a(n)=n!*polcoeff(serreverse(1+x-exp(x^2/2+x^2*O(x^n))),n)}
Formula
E.g.f.: Series_Reversion(1+x - exp(x^2/2)).
a(n) ~ n^(n-1) * c^(n/2) / (sqrt(1+c) * exp(n) * (c-1+sqrt(c))^(n-1/2)), where c = LambertW(1) = 0.5671432904... (see A030178). - Vaclav Kotesovec, Jan 10 2014