A200472 Triangle T(n,k) is the number of ways to assign n people to k unlabeled groups of equal size.
1, 1, 1, 1, 0, 1, 1, 3, 0, 1, 1, 0, 0, 0, 1, 1, 10, 15, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 35, 0, 105, 0, 0, 0, 1, 1, 0, 280, 0, 0, 0, 0, 0, 1, 1, 126, 0, 0, 945, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 462, 5775, 15400, 0, 10395, 0, 0, 0, 0, 0, 1
Offset: 1
Examples
Triangle T(n,k) begins 1; 1, 1; 1, 0, 1; 1, 3, 0, 1; 1, 0, 0, 0, 1; 1, 10, 15, 0, 0, 1; 1, 0, 0, 0, 0, 0, 1; 1, 35, 0, 105, 0, 0, 0, 1; 1, 0, 280, 0, 0, 0, 0, 0, 1; 1, 126, 0, 0, 945, 0, 0, 0, 0, 1; 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1; 1, 462, 5775, 15400, 0, 10395, 0, 0, 0, 0, 0, 1; ... T(6,2) = 10 since there are 10 ways to assign 6 people (A,B,C,D,E,F) into 2 groups of size 3. The assignments are {A,B,C}|{D,E,F}, {A,B,D}|{C,E,F}, {A,B,E}|{C,D,F}, {A,B,F}|{C,D,E}, {A,C,D}|{B,E,F}, {A,C,E}|{B,D,F}, {A,C,F}|{B,D,E}, {B,C,D}|{A,E,F}, {B,C,E}|{A,D,F}, and {B,C,F}|{A,D,E}.
Links
- Dennis P. Walsh, Note on assigning n people into k unlabeled groups of equal size
Crossrefs
Programs
-
Maple
T:= (n, k)-> `if`(modp(n, k)=0, n!/(k!*((n/k)!)^k), 0): seq(seq(T(n, k), k=1..n), n=1..20);
-
Mathematica
nn=11;s=Sum[Exp[y x^i/i!]-1,{i,1,nn}];Range[0,nn]!CoefficientList[Series[s,{x,0,nn}],{x,y}]//Grid (* Geoffrey Critzer, Sep 15 2012 *)
-
PARI
T(n,k) = if(n%k!=0, 0, (n!/k!)/((n/k)!)^k ); for (n=1,15, for (k=1,n, print1(T(n,k),", "));print()); /* Joerg Arndt, Sep 16 2012 */
Formula
For k that divide n, T(n,k) = (n!/k!)/((n/k)!)^k; otherwise, T(n,k) = 0.
E.g.f. when k is fixed: (1/k!) sum(j>=1, (x^j/j!)^k ).
E.g.f. for T(n*r,n): exp(x^r/r!).
T(2n,n) = (2n-1)!! = (2n-1)(2n-3)...(3)(1).
Comments