cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200473 Irregular triangle read by rows: T(n,k) = number of ways to assign n people to d_k unlabeled groups of equal size (where d_k is the k-th divisor of n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 10, 15, 1, 1, 1, 1, 35, 105, 1, 1, 280, 1, 1, 126, 945, 1, 1, 1, 1, 462, 5775, 15400, 10395, 1, 1, 1, 1, 1716, 135135, 1, 1, 126126, 1401400, 1, 1, 6435, 2627625, 2027025, 1, 1, 1, 1, 24310, 2858856, 190590400, 34459425, 1, 1
Offset: 1

Views

Author

Dennis P. Walsh, Nov 18 2011

Keywords

Comments

This sequence is A200472 with zeros removed.

Examples

			T(n,k) begins:
1;
1,      1;
1,      1;
1,      3,       1;
1,      1;
1,     10,      15,       1;
1,      1;
1,     35,     105,       1;
1,    280,       1;
1,    126,     945,       1;
1,      1;
1,    462,    5775,   15400, 10395,   1;
1,      1;
1,   1716,  135135,       1;
1, 126126, 1401400,       1;
1,   6435, 2627625, 2027025,     1;
		

Crossrefs

Cf. A200472, A000005 (row lengths).
Cf. A038041 (row sums).

Programs

  • Maple
    with(numtheory):
    S:= n-> sort([divisors(n)[]]):
    T:= (n,k)-> n!/(S(n)[k])!/((n/(S(n)[k]))!)^(S(n)[k]):
    seq(seq(T(n, k), k=1..tau(n)), n=1..10);
  • Mathematica
    row[n_] := (n!/#!)/(n/#)!^#& /@ Divisors[n];
    Table[row[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Mar 24 2017 *)

Formula

T(n,k) = (n!/d_k!)/(n/d_k)!^d_k, n>=1, 1<=k<=tau(n), d_k = k-th divisor of n.
Sum_{k=1..tau(k)} T(n,k) = A038041(n). - Alois P. Heinz, Jul 22 2016