A200473 Irregular triangle read by rows: T(n,k) = number of ways to assign n people to d_k unlabeled groups of equal size (where d_k is the k-th divisor of n).
1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 10, 15, 1, 1, 1, 1, 35, 105, 1, 1, 280, 1, 1, 126, 945, 1, 1, 1, 1, 462, 5775, 15400, 10395, 1, 1, 1, 1, 1716, 135135, 1, 1, 126126, 1401400, 1, 1, 6435, 2627625, 2027025, 1, 1, 1, 1, 24310, 2858856, 190590400, 34459425, 1, 1
Offset: 1
Examples
T(n,k) begins: 1; 1, 1; 1, 1; 1, 3, 1; 1, 1; 1, 10, 15, 1; 1, 1; 1, 35, 105, 1; 1, 280, 1; 1, 126, 945, 1; 1, 1; 1, 462, 5775, 15400, 10395, 1; 1, 1; 1, 1716, 135135, 1; 1, 126126, 1401400, 1; 1, 6435, 2627625, 2027025, 1;
Links
- Alois P. Heinz, Rows n = 1..250, flattened
- Dennis P. Walsh, Note on assigning n people to k unlabeled groups of equal size
Programs
-
Maple
with(numtheory): S:= n-> sort([divisors(n)[]]): T:= (n,k)-> n!/(S(n)[k])!/((n/(S(n)[k]))!)^(S(n)[k]): seq(seq(T(n, k), k=1..tau(n)), n=1..10);
-
Mathematica
row[n_] := (n!/#!)/(n/#)!^#& /@ Divisors[n]; Table[row[n], {n, 1, 20}] // Flatten (* Jean-François Alcover, Mar 24 2017 *)
Formula
T(n,k) = (n!/d_k!)/(n/d_k)!^d_k, n>=1, 1<=k<=tau(n), d_k = k-th divisor of n.
Sum_{k=1..tau(k)} T(n,k) = A038041(n). - Alois P. Heinz, Jul 22 2016
Comments