cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200475 G.f. satisfies: A(x) = exp( Sum_{n>=1} (Sum_{k=0..2*n} A027907(n,k)^2 * x^k * A(x)^(2*k)) * x^n*A(x)^n/n ), where A027907 is the triangle of trinomial coefficients.

Original entry on oeis.org

1, 1, 3, 13, 65, 350, 1981, 11627, 70132, 432090, 2707595, 17202779, 110563543, 717547090, 4695774335, 30952628861, 205318395288, 1369539030021, 9180527051187, 61813112864984, 417850301293691, 2834802846097200, 19294989810689802, 131723105933867817, 901709774424393614
Offset: 0

Views

Author

Paul D. Hanna, Nov 18 2011

Keywords

Comments

Trinomial coefficients satisfy: Sum_{k=0..2*n} A027907(n,k)*x^k = (1+x+x^2)^n.

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 13*x^3 + 65*x^4 + 350*x^5 + 1981*x^6 +...
Let A = g.f. A(x), then the logarithm of the g.f. equals the series:
log(A(x)) = (1 + x*A^2 + x^2*A^4)*x*A +
(1 + 2^2*x*A^2 + 3^2*x^2*A^4 + 2^2*x^3*A^6 + x^4*A^8)*x^2*A^2/2 +
(1 + 3^2*x*A^2 + 6^2*x^2*A^4 + 7^2*x^3*A^6 + 6^2*x^4*A^8 + 3^2*x^5*A^10 + x^6*A^12)*x^3*A^3/3 +
(1 + 4^2*x*A^2 + 10^2*x^2*A^4 + 16^2*x^3*A^6 + 19^2*x^4*A^8 + 16^2*x^5*A^10 + 10^2*x^6*A^12 + 4^2*x^7*A^14 + x^8*A^16)*x^4*A^4/4 +
(1 + 5^2*x*A^2 + 15^2*x^2*A^4 + 30^2*x^3*A^6 + 45^2*x^4*A^8 + 51^2*x^5*A^10 + 45^2*x^6*A^12 + 30^2*x^7*A^14 + 15^2*x^8*A^16 + 5^2*x^9*A^18 + x^10*A^20)*x^5*A^5/5 +...
which involves the squares of the trinomial coefficients A027907(n,k).
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=(1-x*A^2+x^3*A^6-x^5*A^10+x^6*A^12)/(1-x*A^2+x*O(x^n))^2);polcoeff(A,n)}
    
  • PARI
    /* G.f. A(x) using the squares of the trinomial coefficients */
    {A027907(n, k)=polcoeff((1+x+x^2)^n, k)}
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(k=0, 2*m, A027907(m, k)^2 *x^k*(A+x*O(x^n))^(2*k))*x^m*A^m/m))); polcoeff(A, n)}

Formula

G.f. satisfies: A(x) = (1 + x^3*A(x)^6)*(1 + x^6*A(x)^12)/((1 - x*A(x)^2)*(1 - x^4*A(x)^8)).