A200505 Least m>0 such that n = 5^x-y^2 (mod m) has no solution, or 0 if no such m exists.
0, 0, 4, 4, 0, 0, 4, 4, 5, 0, 4, 4, 24, 5, 4, 4, 0, 15, 4, 4, 75, 0, 4, 4, 0, 0, 4, 4, 5, 39, 4, 4, 15, 5, 4, 4, 24, 35, 4, 4, 175, 31, 4, 4, 0, 39, 4, 4, 5, 0, 4, 4, 35, 5, 4, 4, 21, 55, 4, 4, 24, 0, 4, 4, 31, 39, 4, 4, 5, 399, 4, 4, 31, 5, 4, 4, 0, 15, 4, 4
Offset: 0
Keywords
Examples
See A200507.
Links
- M. F. Hasler, Table of n, a(n) for n = 0..143
Programs
-
PARI
A200505(n,b=5,p=3)={ my( x=0, qr, bx, seen ); for( m=3,9e9, while( x^p < m, issquare(b^x-n) & return(0); x++); qr=vecsort(vector(m,i,i^2+n)%m,,8); seen=0; bx=1; until( bittest(seen+=1<
bx & break; next(3))); return(m))}
Formula
a(2+4k)=a(3+4k)=4, a(8+20k)=a(13+20k)=5 for all k>=0.
Comments