A200508 Least m>0 such that n = 8^x-y^2 (mod m) has no solution, or 0 if no such m exists.
0, 0, 4, 7, 0, 7, 4, 0, 0, 7, 4, 8, 7, 20, 4, 0, 7, 7, 4, 7, 9, 16, 4, 7, 7, 16, 4, 8, 0, 9, 4, 7, 9, 7, 4, 8, 48, 7, 4, 0, 7, 9, 4, 8, 7, 7, 4, 7, 0, 20, 4, 7, 7, 12, 4, 0, 9, 16, 4, 7, 0, 7, 4, 0, 0, 7, 4, 8, 7, 16, 4, 0, 7, 7, 4, 7, 32, 9, 4, 7, 7, 44, 4
Offset: 0
Keywords
Examples
See A200507.
Links
- M. F. Hasler, Table of n, a(n) for n = 0..1000
Programs
-
PARI
A200508(n,b=8,p=3)={ my( x=0, qr, bx, seen ); for( m=3,9e9, while( x^p < m, issquare(b^x-n) & return(0); x++); qr=vecsort(vector(m,i,i^2+n)%m,,8); seen=0; bx=1; until( bittest(seen+=1<
bx & break; next(3))); return(m))}
Comments