cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200535 G.f. satisfies: A(x) = exp( Sum_{n>=1} [Sum_{k=0..2*n} C(2*n,k)^2 * x^k] / A(x)^n * x^n/n ).

Original entry on oeis.org

1, 1, 4, 5, 9, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 248, 252, 256, 260
Offset: 0

Views

Author

Paul D. Hanna, Nov 18 2011

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 5*x^3 + 9*x^4 + 12*x^5 + 16*x^6 + 20*x^7 +...
where A(x) = G(x/A(x)) and G(x) = A(x*G(x)) is the g.f. of A199257:
G(x) = 1 + x + 5*x^2 + 18*x^3 + 86*x^4 + 408*x^5 + 2075*x^6 +...
...
The logarithm of the g.f. A(x) equals the series:
log(A(x)) = (1 + 2^2*x + x^2)/A(x) * x +
(1 + 4^2*x + 6^2*x^2 + 4^2*x^3 + x^4)/A(x)^2 * x^2/2 +
(1 + 6^2*x + 15^2*x^2 + 20^2*x^3 + 15^2*x^4 + 6^2*x^5 + x^6)/A(x)^3 * x^3/3 +
(1 + 8^2*x + 28^2*x^2 + 56^2*x^3 + 70^2*x^4 + 56^2*x^5 + 28^2*x^6 + 8^2*x^7 + x^8)/A(x)^4 * x^4/4 +
(1 + 10^2*x + 45^2*x^2 + 120^2*x^3 + 210^2*x^4 + 252^2*x^5 + 210^2*x^6 + 120^2*x^7 + 45^2*x^8 + 10^2*x^9 + x^10)/A(x)^5 * x^5/5 +...
which involves the squares of binomial coefficients C(2*n,k).
		

Crossrefs

Cf. A199257.

Programs

  • PARI
    {a(n)=polcoeff((1+x^2)^2*(1+x^3)/((1-x)*(1-x^2) +x*O(x^n)),n)}
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1, n, sum(k=0, n, binomial(2*m, k)^2 *x^k)/(A+x*O(x^n))^m *x^m/m)));polcoeff(A, n)}

Formula

G.f.: (1+x^2)^2*(1+x^3)/((1-x)*(1-x^2)).