cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200538 Product of Jacobsthal and Motzkin numbers: a(n) = A001045(n+1)*A001006(n).

Original entry on oeis.org

1, 1, 6, 20, 99, 441, 2193, 10795, 55233, 284735, 1494404, 7914270, 42360541, 228460935, 1241224182, 6784445340, 37288826697, 205937705799, 1142317727466, 6361104740100, 35548154733969, 199295884785459, 1120615326442269, 6318077793648075, 35710056983891367, 202297486497822121
Offset: 0

Views

Author

Paul D. Hanna, Nov 18 2011

Keywords

Comments

The g.f. for the Jacobsthal numbers is 1/(1-x-2*x^2) and the g.f. M(x) for the Motzkin numbers satisfy: M(x) = 1 + x*M(x) + x^2*M(x)^2.

Examples

			G.f.: A(x) = 1 + x + 6*x^2 + 20*x^3 + 99*x^4 + 441*x^5 + 2193*x^6 +...
where A(x) = 1*1 + 1*1*x + 3*2*x^2 + 5*4*x^3 + 11*9*x^4 + 21*21*x^5 + 43*51*x^6 + 85*127*x^7 + 171*323*x^8 +...+ A001045(n+1)*A001006(n)*x^n +...
		

Crossrefs

Programs

  • PARI
    {A001006(n)=polcoeff((1-x-sqrt((1-x)^2-4*x^2+x^3*O(x^n)))/(2*x^2),n)}
    {A001045(n)=polcoeff( x/(1-x-2*x^2+x*O(x^n)),n)}
    {a(n)=A001045(n+1)*A001006(n)}