cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200539 Product of Fibonacci and Motzkin numbers: a(n) = A000045(n+1)*A001006(n).

Original entry on oeis.org

1, 1, 4, 12, 45, 168, 663, 2667, 10982, 45925, 194732, 834912, 3614063, 15771795, 69316740, 306534564, 1362986799, 6089916936, 27328613142, 123118156260, 556626199974, 2524659817449, 11484671681511, 52384730922720, 239534402969925, 1097805759803893, 5042014405418968
Offset: 0

Views

Author

Paul D. Hanna, Nov 18 2011

Keywords

Comments

The g.f. for the Fibonacci numbers is 1/(1-x-x^2) and the g.f. M(x) for the Motzkin numbers satisfies: M(x) = 1 + x*M(x) + x^2*M(x)^2.

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 12*x^3 + 45*x^4 + 168*x^5 + 663*x^6 +...
where A(x) = 1*1 + 1*1*x + 2*2*x^2 + 3*4*x^3 + 5*9*x^4 + 8*21*x^5 + 13*51*x^6 + 21*127*x^7 + 34*323*x^8 +...+ A000045(n+1)*A001006(n)*x^n +...
		

Crossrefs

Programs

  • PARI
    {A001006(n)=polcoeff((1-x-sqrt((1-x)^2-4*x^2+x^3*O(x^n)))/(2*x^2),n)}
    {a(n)=fibonacci(n+1)*A001006(n)}