cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200543 Product of tribonacci numbers: a(n) = A000073(n+2)*A000213(n).

Original entry on oeis.org

1, 1, 2, 12, 35, 117, 408, 1364, 4617, 15645, 52882, 178920, 605331, 2047705, 6927424, 23435384, 79281057, 268206185, 907335090, 3069491988, 10384017875, 35128880685, 118840150776, 402033352684, 1360069088841, 4601080767717, 15565344749410, 52657184101648, 178137977818211, 602636462317425
Offset: 0

Views

Author

Paul D. Hanna, Nov 19 2011

Keywords

Comments

The g.f. of the tribonacci numbers are as follows: g.f. for A000073 is x^2/(1-x-x^2-x^3), and g.f. for A000213 is (1-x^2)/(1-x-x^2-x^3).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 12*x^3 + 35*x^4 + 117*x^5 + 408*x^6 +...
where A(x) = 1*1 + 1*1*x + 2*1*x^2 + 4*3*x^3 + 7*5*x^4 + 13*9*x^5 + 24*17*x^6 + 44*31*x^7 + 81*57*x^8 + 149*105*x^9 +...+ A000073(n+2)*A000213(n)*x^n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff((1-x-3*x^2-x^3)/((1-3*x-x^2-x^3)*(1+x+x^2-x^3)+x*O(x^n)),n)}

Formula

G.f.: (1 - x - 3*x^2 - x^3) / ((1 - 3*x - x^2 - x^3)*(1 + x + x^2 - x^3)).