cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200560 E.g.f.: arcsin(x) o x/(1-x) o sin(x), a composition of functions involving sin(x) and its inverse.

Original entry on oeis.org

1, 2, 6, 28, 180, 1502, 15456, 189208, 2683920, 43263962, 780807456, 15593180788, 341340941760, 8126644655222, 209050212857856, 5777935570510768, 170755837008595200, 5373097909706399282, 179351443518333574656, 6329687401322560131148, 235491796312126982538240
Offset: 1

Views

Author

Paul D. Hanna, Nov 29 2011

Keywords

Comments

Given e.g.f. A(x), then A(Pi/6) = Pi/2, where Pi/6 is the radius of convergence.

Examples

			E.g.f.: A(x) = x + 2*x^2/2! + 6*x^3/3! + 28*x^4/4! + 180*x^5/5! +...
where the initial iterations of e.g.f. A(x) begin:
A(A(x)) = arcsin( sin(x)/(1-2*sin(x)) ); more explicitly,
A(A(x)) = x + 4*x^2/2! + 24*x^3/3! + 200*x^4/4! + 2160*x^5/5! +...
A(A(A(x))) = arcsin( sin(x)/(1-3*sin(x)) ); more explicitly,
A(A(A(x))) = x + 6*x^2/2! + 54*x^3/3! + 660*x^4/4! + 10260*x^5/5! +...
A(A(A(A(x)))) = arcsin( sin(x)/(1-4*sin(x)) ); more explicitly,
A(A(A(A(x)))) = x + 8*x^2/2! + 96*x^3/3! + 1552*x^4/4! + 31680*x^5/5! +...
		

Programs

  • PARI
    {a(n)=n!*polcoeff(subst(asin(x+x*O(x^n)), x, subst(x/(1-x), x, sin(x+x*O(x^n)))), n)}

Formula

E.g.f. A(x) satisfies: A(-A(-x)) = x.
The n-th iteration of e.g.f. A(x) equals: arcsin(x) o x/(1-n*x) o sin(x) = arcsin( sin(x)/(1-n*sin(x)) ).
a(n) ~ 2^n * 3^(n-1/4) * n^(n-1) / (Pi^(n-1/2) * exp(n)). - Vaclav Kotesovec, Apr 05 2016