A200601 Decimal expansion of least x > 0 satisfying 4*x^2 - x + 2 = tan(x).
1, 4, 6, 1, 0, 8, 1, 7, 4, 3, 4, 8, 8, 1, 8, 9, 4, 1, 5, 2, 6, 5, 5, 8, 1, 2, 2, 8, 9, 5, 8, 0, 8, 2, 0, 8, 8, 0, 2, 7, 4, 7, 9, 8, 7, 8, 0, 1, 7, 0, 9, 4, 7, 4, 2, 4, 0, 0, 2, 2, 8, 4, 6, 8, 3, 0, 1, 8, 6, 2, 1, 2, 3, 6, 0, 8, 9, 1, 7, 0, 7, 8, 5, 8, 6, 4, 1, 9, 9, 7, 3, 7, 3, 9, 4, 9, 7, 2, 8
Offset: 1
Examples
x=1.461081743488189415265581228958082088027479878...
Links
- Iain Fox, Table of n, a(n) for n = 1..20000
Crossrefs
Cf. A200338.
Programs
-
Mathematica
a = 4; b = -1; c = 2; f[x_] := a*x^2 + b*x + c; g[x_] := Tan[x] Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110] RealDigits[r] (* A200601 *)
-
PARI
solve(x=1, 1.5, 4*x^2 - x + 2 - tan(x)) \\ Iain Fox, Mar 07 2018
Comments