A200621 Decimal expansion of the greater of two values of x satisfying 5*x^2 - 1 = tan(x) and 0 < x < Pi/2.
1, 4, 6, 9, 0, 0, 2, 7, 1, 9, 5, 1, 3, 6, 1, 0, 6, 1, 3, 2, 2, 3, 3, 6, 2, 5, 9, 7, 5, 8, 3, 6, 3, 2, 4, 1, 1, 2, 7, 8, 0, 0, 0, 3, 4, 6, 1, 5, 3, 5, 7, 4, 6, 4, 8, 5, 8, 8, 7, 7, 3, 5, 8, 6, 2, 2, 8, 1, 7, 2, 0, 1, 8, 4, 8, 3, 0, 6, 1, 0, 4, 5, 6, 4, 2, 4, 9, 0, 1, 9, 0, 6, 6, 9, 7, 6, 7, 0, 9
Offset: 1
Examples
lesser: 0.5738256142207075194706993073950289720400... greater: 1.469002719513610613223362597583632411278000...
Crossrefs
Cf. A200614.
Programs
-
Mathematica
a = 5; c = 1; f[x_] := a*x^2 - c; g[x_] := Tan[x] Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110] RealDigits[r] (* A200620 *) r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110] RealDigits[r] (* A200621 *)
Comments