A200625 Decimal expansion of the greater of two values of x satisfying 5*x^2 - 3 = tan(x) and 0 < x < Pi/2.
1, 4, 3, 4, 4, 3, 6, 7, 9, 8, 5, 3, 1, 0, 6, 4, 8, 8, 2, 7, 1, 8, 8, 6, 4, 3, 5, 1, 3, 5, 4, 3, 3, 5, 8, 5, 0, 3, 4, 3, 9, 6, 6, 8, 1, 5, 1, 2, 5, 3, 6, 8, 1, 7, 1, 8, 4, 8, 5, 3, 0, 2, 3, 6, 4, 7, 1, 1, 6, 6, 0, 5, 2, 5, 8, 3, 9, 9, 2, 6, 4, 1, 9, 5, 5, 1, 8, 5, 9, 7, 6, 8, 1, 3, 6, 1, 6, 6, 6
Offset: 1
Examples
lesser: 0.9325170518642294819498571898931399897... greater: 1.4344367985310648827188643513543358503...
Crossrefs
Cf. A200614.
Programs
-
Mathematica
a = 5; c = 3; f[x_] := a*x^2 - c; g[x_] := Tan[x] Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .93, .94}, WorkingPrecision -> 110] RealDigits[r] (* A200624 *) r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110] RealDigits[r] (* A200625 *)
Comments