A200673 Total number of nested arcs in the set partitions of n.
0, 0, 0, 1, 16, 170, 1549, 13253, 110970, 928822, 7862353, 67758488, 596837558, 5385257886, 49837119320, 473321736911, 4614233950422, 46168813528478, 474017189673555, 4992024759165631, 53902161267878974, 596448192670732180, 6760141422115666131, 78438566784031690720
Offset: 1
Keywords
Links
- M. Aguiar, C. Andre, C. Benedetti, N. Bergeron, Z. Chen, P. Diaconis, A. Hendrickson, S. Hsiao, I.M. Isaacs, A. Jedwab, K. Johnson, G. Karaali, A. Lauve, T. Le, S. Lewis, H. Li, K. Magaard, E. Marberg, J-C. Novelli, A. Pang, F. Saliola, L. Tevlin, J-Y. Thibon, N. Thiem, V. Venkateswaran, C.R. Vinroot, N. Yan, M. Zabrocki, Supercharacters, symmetric functions in noncommuting variables, and related Hopf algebras, arXiv:1009.4134 [math.CO], 2010-2011.
- C. André, Basic characters of the unitriangular group, Journal of Algebra, 175 (1995), 287-319.
Programs
-
Maple
c:=proc(n,k,j) option remember; if n=3 and k=2 and j=1 then RETURN(1) fi; if k=2 and j=1 then RETURN(c(n-1,n-2,1)) fi; if k=j+1 then RETURN(c(n,j+1,j-1) + c(n-1,j,j-1)) fi; c(n,k-1,j)+c(n-1,k-1,j) end: nst:=proc(n) local res,k,j; res:=0; for j to n-3 do for k from j+1 to n-2 do res:=res+j*(k-j)*c(n,k,j) od; od; res end: seq(nst(n),n=1..21);
-
Mathematica
c[n_, k_, j_] := c[n, k, j] = Which[n == 3 && k == 2 && j == 1, 1, k == 2 && j == 1, c[n - 1, n - 2, 1], k == j + 1, c[n, j + 1, j - 1] + c[n - 1, j, j - 1], True, c[n, k - 1, j] + c[n - 1, k - 1, j]]; nst[n_] := Module[{res = 0, k, j}, For[j = 1, j <= n - 3, j++, For[k = j + 1, k <= n - 2, k++, res = res + j*(k - j)*c[n, k, j]]]; res]; Array[nst, 21] (* Jean-François Alcover, Nov 25 2017, translated from Maple *)
Comments