A200580 Sum of dimension exponents of supercharacter of unipotent upper triangular matrices.
0, 1, 10, 73, 490, 3246, 21814, 150535, 1072786, 7915081, 60512348, 479371384, 3932969516, 33392961185, 293143783762, 2658128519225, 24872012040510, 239916007100054, 2383444110867378, 24363881751014383, 256034413642582418, 2763708806499744097
Offset: 1
Keywords
A200673 Total number of nested arcs in the set partitions of n.
0, 0, 0, 1, 16, 170, 1549, 13253, 110970, 928822, 7862353, 67758488, 596837558, 5385257886, 49837119320, 473321736911, 4614233950422, 46168813528478, 474017189673555, 4992024759165631, 53902161267878974, 596448192670732180, 6760141422115666131, 78438566784031690720
Offset: 1
Keywords
Comments
Supercharacter theory of unipotent upper triangular matrices over a finite field F(2) is indexed by set partitions S(n) of {1,2,..., n} where a set partition P of {1,2,..., n} is a subset { (i,j) : 1 <= i < j <= n} such that (i,j) in P implies (i,k),(k,j) are not in P for all i < k < j.
One of the statistic used to compute the supercharacter table is the number of nested pairs in P. That is the cardinality nst(P) = | { (i < r < s < j) : (i,j),(r,s) in P } |.
The sequence we have is nst(n) = Sum_{P in S(n)} nst(P).
Links
- M. Aguiar, C. Andre, C. Benedetti, N. Bergeron, Z. Chen, P. Diaconis, A. Hendrickson, S. Hsiao, I.M. Isaacs, A. Jedwab, K. Johnson, G. Karaali, A. Lauve, T. Le, S. Lewis, H. Li, K. Magaard, E. Marberg, J-C. Novelli, A. Pang, F. Saliola, L. Tevlin, J-Y. Thibon, N. Thiem, V. Venkateswaran, C.R. Vinroot, N. Yan, M. Zabrocki, Supercharacters, symmetric functions in noncommuting variables, and related Hopf algebras, arXiv:1009.4134 [math.CO], 2010-2011.
- C. André, Basic characters of the unitriangular group, Journal of Algebra, 175 (1995), 287-319.
Programs
-
Maple
c:=proc(n,k,j) option remember; if n=3 and k=2 and j=1 then RETURN(1) fi; if k=2 and j=1 then RETURN(c(n-1,n-2,1)) fi; if k=j+1 then RETURN(c(n,j+1,j-1) + c(n-1,j,j-1)) fi; c(n,k-1,j)+c(n-1,k-1,j) end: nst:=proc(n) local res,k,j; res:=0; for j to n-3 do for k from j+1 to n-2 do res:=res+j*(k-j)*c(n,k,j) od; od; res end: seq(nst(n),n=1..21);
-
Mathematica
c[n_, k_, j_] := c[n, k, j] = Which[n == 3 && k == 2 && j == 1, 1, k == 2 && j == 1, c[n - 1, n - 2, 1], k == j + 1, c[n, j + 1, j - 1] + c[n - 1, j, j - 1], True, c[n, k - 1, j] + c[n - 1, k - 1, j]]; nst[n_] := Module[{res = 0, k, j}, For[j = 1, j <= n - 3, j++, For[k = j + 1, k <= n - 2, k++, res = res + j*(k - j)*c[n, k, j]]]; res]; Array[nst, 21] (* Jean-François Alcover, Nov 25 2017, translated from Maple *)
A200660 Sum of the number of arcs describing the set partitions of {1,2,...,n}.
0, 1, 8, 49, 284, 1658, 9974, 62375, 406832, 2769493, 19668054, 145559632, 1121153604, 8974604065, 74553168520, 641808575961, 5718014325296, 52653303354906, 500515404889978, 4905937052293759, 49530189989912312, 514541524981377909, 5494885265473192914
Offset: 1
Keywords
Comments
Supercharacter theory of unipotent upper triangular matrices over a finite field F(2) is indexed by set partitions S(n) of {1,2,...,n} where a set partition P of {1,2,...,n} is a subset { (i,j) : 1 <= i < j <= n} such that (i,j) in P implies (i,k),(k,j) are not in P for all i < l < j.
One of the statistics used to compute the supercharacter table is the number of arcs in P (that is, the cardinality |P| of P).
The sequence we have is arcs(n) = Sum_{P in S(n)} |P|.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..500
- M. Aguiar, C. Andre, C. Benedetti, N. Bergeron, Z. Chen, P. Diaconis, A. Hendrickson, S. Hsiao, I. M. Isaacs, A. Jedwab, K. Johnson, G. Karaali, A. Lauve, T. Le, S. Lewis, H. Li, K. Magaard, E. Marberg, J-C. Novelli, A. Pang, F. Saliola, L. Tevlin, J-Y. Thibon, N. Thiem, V. Venkateswaran, C. R. Vinroot, N. Yan, and M. Zabrocki, Supercharacters, symmetric functions in noncommuting variables, and related Hopf algebras, arXiv:1009.4134 [math.CO], 2010-2011.
- C. André, Basic characters of the unitriangular group, Journal of Algebra, 175 (1995), 287-319.
Crossrefs
Programs
-
Maple
b:=proc(n,k) option remember; if n=1 and k=1 then RETURN(1) fi; if k=1 then RETURN(b(n-1,n-1)) fi; b(n,k-1)+b(n-1,k-1) end: arcs:=proc(n) local res,k; res:=0; for k to n-1 do res:=res+ k*b(n,k) od; res end: seq(arcs(n),n=1..34);
-
Mathematica
b[n_, k_] := b[n, k] = Which[n == 1 && k == 1, 1, k == 1, b[n - 1, n - 1], True, b[n, k - 1] + b[n - 1, k - 1]]; arcs[n_] := Module[{res = 0, k}, For[k = 1, k <= n-1, k++, res = res + k * b[n, k]]; res]; Array[arcs, 34] (* Jean-François Alcover, Nov 25 2017, translated from Maple *)
Formula
a(n) = Sum_{k=1..n} Stirling2(n,k) * k * (n-k). - Ilya Gutkovskiy, Apr 06 2021
a(n) = Sum_{k=n..n*(n+1)/2} (k-n) * A367955(n,k). - Alois P. Heinz, Dec 11 2023
Comments
Links
Crossrefs
Programs
Magma
Maple
Mathematica
Formula