cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A200660 Sum of the number of arcs describing the set partitions of {1,2,...,n}.

Original entry on oeis.org

0, 1, 8, 49, 284, 1658, 9974, 62375, 406832, 2769493, 19668054, 145559632, 1121153604, 8974604065, 74553168520, 641808575961, 5718014325296, 52653303354906, 500515404889978, 4905937052293759, 49530189989912312, 514541524981377909, 5494885265473192914
Offset: 1

Views

Author

Nantel Bergeron, Nov 20 2011

Keywords

Comments

Supercharacter theory of unipotent upper triangular matrices over a finite field F(2) is indexed by set partitions S(n) of {1,2,...,n} where a set partition P of {1,2,...,n} is a subset { (i,j) : 1 <= i < j <= n} such that (i,j) in P implies (i,k),(k,j) are not in P for all i < l < j.
One of the statistics used to compute the supercharacter table is the number of arcs in P (that is, the cardinality |P| of P).
The sequence we have is arcs(n) = Sum_{P in S(n)} |P|.

Crossrefs

Cf. A011971 (sequence is computed from Aitken's array b(n,k) arcs(n) = Sum_{k=1..n-1} k*b(n,k)).
Cf. A200580, A200673 (other statistics related to supercharacter table).
Cf. A367955.

Programs

  • Maple
    b:=proc(n,k) option remember;
      if n=1 and k=1 then RETURN(1) fi;
      if k=1 then RETURN(b(n-1,n-1)) fi;
      b(n,k-1)+b(n-1,k-1)
    end:
    arcs:=proc(n) local res,k;
      res:=0;
      for k to n-1 do res:=res+ k*b(n,k) od;
      res
    end:
    seq(arcs(n),n=1..34);
  • Mathematica
    b[n_, k_] := b[n, k] = Which[n == 1 && k == 1, 1, k == 1, b[n - 1, n - 1], True, b[n, k - 1] + b[n - 1, k - 1]];
    arcs[n_] := Module[{res = 0, k}, For[k = 1, k <= n-1, k++, res = res + k * b[n, k]]; res];
    Array[arcs, 34] (* Jean-François Alcover, Nov 25 2017, translated from Maple *)

Formula

a(n) = Sum_{k=1..n} Stirling2(n,k) * k * (n-k). - Ilya Gutkovskiy, Apr 06 2021
a(n) = Sum_{k=n..n*(n+1)/2} (k-n) * A367955(n,k). - Alois P. Heinz, Dec 11 2023

A200673 Total number of nested arcs in the set partitions of n.

Original entry on oeis.org

0, 0, 0, 1, 16, 170, 1549, 13253, 110970, 928822, 7862353, 67758488, 596837558, 5385257886, 49837119320, 473321736911, 4614233950422, 46168813528478, 474017189673555, 4992024759165631, 53902161267878974, 596448192670732180, 6760141422115666131, 78438566784031690720
Offset: 1

Views

Author

Nantel Bergeron, Nov 20 2011

Keywords

Comments

Supercharacter theory of unipotent upper triangular matrices over a finite field F(2) is indexed by set partitions S(n) of {1,2,..., n} where a set partition P of {1,2,..., n} is a subset { (i,j) : 1 <= i < j <= n} such that (i,j) in P implies (i,k),(k,j) are not in P for all i < k < j.
One of the statistic used to compute the supercharacter table is the number of nested pairs in P. That is the cardinality nst(P) = | { (i < r < s < j) : (i,j),(r,s) in P } |.
The sequence we have is nst(n) = Sum_{P in S(n)} nst(P).

Crossrefs

Cf. A200580, A200660 (other statistics related to supercharacter table).

Programs

  • Maple
    c:=proc(n,k,j) option remember;
      if n=3 and k=2 and j=1 then RETURN(1) fi;
      if k=2 and j=1 then RETURN(c(n-1,n-2,1)) fi;
      if k=j+1 then RETURN(c(n,j+1,j-1) + c(n-1,j,j-1)) fi;
      c(n,k-1,j)+c(n-1,k-1,j)
    end:
    nst:=proc(n) local res,k,j;
      res:=0;
      for j to n-3 do
         for k from j+1 to n-2 do
          res:=res+j*(k-j)*c(n,k,j) od; od;
      res
    end:
    seq(nst(n),n=1..21);
  • Mathematica
    c[n_, k_, j_] := c[n, k, j] = Which[n == 3 && k == 2 && j == 1, 1, k == 2 && j == 1, c[n - 1, n - 2, 1], k == j + 1, c[n, j + 1, j - 1] + c[n - 1, j, j - 1], True, c[n, k - 1, j] + c[n - 1, k - 1, j]];
    nst[n_] := Module[{res = 0, k, j}, For[j = 1, j <= n - 3, j++, For[k = j + 1, k <= n - 2, k++, res = res + j*(k - j)*c[n, k, j]]]; res];
    Array[nst, 21] (* Jean-François Alcover, Nov 25 2017, translated from Maple *)

A226507 4*B(n+4) - (4*n+15)*B(n+3) + (n^2+8*n+9)*B(n+2) - (4*n+3)*B(n+1) + n*B(n), where B(i) are the Bell numbers A000110.

Original entry on oeis.org

0, 0, 0, 1, 16, 177, 1726, 15912, 143148, 1279939, 11504326, 104686659, 968808308, 9144180028, 88184565504, 869867691833, 8781919559956, 90765497635245, 960434143555986, 10403548856756708, 115336464546432180, 1308260884070774299, 15177980646442995698, 180036437138753006607, 2182526416321158803528
Offset: 0

Views

Author

N. J. A. Sloane, Jun 10 2013

Keywords

Crossrefs

Programs

  • Magma
    [4*Bell(n+4)-(4*n+15)*Bell(n+3)+(n^2+8*n+9)*Bell(n+2)-(4*n+3)*Bell(n+1)+n*Bell(n): n in [0..30]]; // Vincenzo Librandi, Jul 16 2013
  • Maple
    A000110 := proc(n) option remember; if n <= 1 then 1 else add( binomial(n-1, i)*A000110(n-1-i), i=0..n-1); fi; end;
    B:=A000110;
    f:=n->4*B(n+4) - (4*n+15)*B(n+3) + (n^2+8*n+9)*B(n+2) - (4*n+3)*B(n+1) + n*B(n);
      [seq(f(n),n=0..30)];
  • Mathematica
    Table[4 BellB[n+4] - (4 n + 15) BellB[n + 3] + (n^2 + 8 n + 9) BellB[n+2] - (4 n + 3) BellB[n+1] + n BellB[n],{n, 0, 30}] (* Vincenzo Librandi, Jul 16 2013 *)

Formula

a(n) ~ n^4 * Bell(n) / LambertW(n)^2 * (1 - 4/LambertW(n) + 4/LambertW(n)^2). - Vaclav Kotesovec, Jul 28 2021
Showing 1-3 of 3 results.