cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A367955 Number T(n,k) of partitions of [n] whose block maxima sum to k, triangle T(n,k), n>=0, n<=k<=n*(n+1)/2, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 5, 2, 3, 1, 1, 1, 2, 5, 10, 7, 7, 11, 3, 4, 1, 1, 1, 2, 5, 10, 23, 15, 23, 25, 37, 18, 14, 19, 4, 5, 1, 1, 1, 2, 5, 10, 23, 47, 39, 49, 81, 84, 129, 74, 78, 70, 87, 33, 23, 29, 5, 6, 1, 1, 1, 2, 5, 10, 23, 47, 103, 81, 129, 172, 261, 304, 431, 299, 325, 376, 317, 424, 196, 183, 144, 165, 52, 34, 41, 6, 7, 1
Offset: 0

Views

Author

Alois P. Heinz, Dec 05 2023

Keywords

Comments

Rows and also columns reversed converge to A365441.
T(n,k) is defined for all n,k >= 0. The triangle contains only the positive terms. T(n,k) = 0 if k < n or k > n*(n+1)/2.

Examples

			T(4,7) = 5: 123|4, 124|3, 13|24, 14|23, 1|2|34.
T(5,9) = 10: 1234|5, 1235|4, 124|35, 125|34, 134|25, 135|24, 14|235, 15|234, 1|23|45, 1|245|3.
T(5,13) = 3: 1|23|4|5, 1|24|3|5, 1|25|3|4.
T(5,14) = 4: 12|3|4|5, 13|2|4|5, 14|2|3|5, 15|2|3|4.
T(5,15) = 1: 1|2|3|4|5.
Triangle T(n,k) begins:
  1;
  .  1;
  .  .  1, 1;
  .  .  .  1, 1, 2, 1;
  .  .  .  .  1, 1, 2, 5, 2,  3,  1;
  .  .  .  .  .  1, 1, 2, 5, 10,  7,  7, 11,  3,  4,  1;
  .  .  .  .  .  .  1, 1, 2,  5, 10, 23, 15, 23, 25, 37, 18, 14, 19, 4, 5, 1;
  ...
		

Crossrefs

Row sums give A000110.
Column sums give A204856.
Antidiagonal sums give A368102.
T(2n,3n) gives A365441.
T(n,2n) gives A368675.
Row maxima give A367969.
Row n has A000124(n-1) terms (for n>=1).
Cf. A000217, A124327 (the same for block minima), A200660, A278677.

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, 1,
          b(n-1, m)*m + expand(x^n*b(n-1, m+1)))
        end:
    T:= (n, k)-> coeff(b(n, 0), x, k):
    seq(seq(T(n, k), k=n..n*(n+1)/2), n=0..10);
    # second Maple program:
    b:= proc(n, i, t) option remember; `if`(i*(i+1)/2 b(k, n, 0):
    seq(seq(T(n, k), k=n..n*(n+1)/2), n=0..10);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[i*(i + 1)/2 < n, 0, If[n == 0, t^i, If[t == 0, 0, t*b[n, i - 1, t]] + (t + 1)^Max[0, 2*i - n - 1]*b[n - i, Min[n - i, i - 1], t + 1]]];
    T[0, 0] = 1; T[n_, k_] := b[k, n, 0];
    Table[Table[T[n, k], {k, n, n*(n + 1)/2}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Oct 03 2024, after Alois P. Heinz's second Maple program *)

Formula

Sum_{k=n..n*(n+1)/2} k * T(n,k) = A278677(n-1) for n>=1.
Sum_{k=n..n*(n+1)/2} (k-n) * T(n,k) = A200660(n) for n>=1.
T(n,n) = T(n,n*(n+1)/2) = 1.

A200580 Sum of dimension exponents of supercharacter of unipotent upper triangular matrices.

Original entry on oeis.org

0, 1, 10, 73, 490, 3246, 21814, 150535, 1072786, 7915081, 60512348, 479371384, 3932969516, 33392961185, 293143783762, 2658128519225, 24872012040510, 239916007100054, 2383444110867378, 24363881751014383, 256034413642582418, 2763708806499744097
Offset: 1

Views

Author

Nantel Bergeron, Nov 19 2011

Keywords

Comments

Supercharacter theory of unipotent upper triangular matrices over a finite field F(2) is indexed by set partitions S(n) of {1,2,..., n} where a set partition P of {1,2,..., n} is a subset { (i,j) : 1 <= i < j <= n}
such that (i,j) in P implies (i,k),(k,j) are not in P for all i
The dimension of the representation associated to the supercharacter indexed by P is given by 2^Dim(P) where Dim(P) = sum [ j-i , (i,j) in P ].
The sequence we have is a(n) = sum [ Dim(P) , P in S(n) ].

Crossrefs

Cf. A011971 (sequence is computed from the Aitken's array b(n,k)
a(n) = sum [ k*(n-k)*b(n,k), k=1..n-1 ]).
Cf. A200660, A200673 (other statistics related to supercharacter theory).

Programs

  • Magma
    [-2*Bell(n+3)+(n+5)*Bell(n+2): n in [1..30]]; // Vincenzo Librandi, Jul 16 2013
  • Maple
    b:=proc(n,k) option remember;
      if n=1 and k=1 then RETURN(1) fi;
      if k=1 then RETURN(b(n-1,n-1)) fi;
      b(n,k-1)+b(n-1,k-1)
    end:
    a:=proc(n) local res,k;
      res:=0;
      for k to n-1 do res:=res+k*(n-k)*b(n,k) od;
      res
    end:
    seq(a(n),n=1..34);
  • Mathematica
    Table[-2 BellB[n+3] + (n+5) BellB[n+2], {n, 1, 30}] (* Vincenzo Librandi, Jul 16 2013 *)

Formula

a(n) = -2*B(n+2) + (n+4)*B(n+1) where B(i) = Bell numbers A000110. [Chern et al.] - N. J. A. Sloane, Jun 10 2013 [for offset 2]
a(n) ~ n^3 * Bell(n) / LambertW(n)^2 * (1 - 2/LambertW(n)). - Vaclav Kotesovec, Jul 28 2021

A200673 Total number of nested arcs in the set partitions of n.

Original entry on oeis.org

0, 0, 0, 1, 16, 170, 1549, 13253, 110970, 928822, 7862353, 67758488, 596837558, 5385257886, 49837119320, 473321736911, 4614233950422, 46168813528478, 474017189673555, 4992024759165631, 53902161267878974, 596448192670732180, 6760141422115666131, 78438566784031690720
Offset: 1

Author

Nantel Bergeron, Nov 20 2011

Keywords

Comments

Supercharacter theory of unipotent upper triangular matrices over a finite field F(2) is indexed by set partitions S(n) of {1,2,..., n} where a set partition P of {1,2,..., n} is a subset { (i,j) : 1 <= i < j <= n} such that (i,j) in P implies (i,k),(k,j) are not in P for all i < k < j.
One of the statistic used to compute the supercharacter table is the number of nested pairs in P. That is the cardinality nst(P) = | { (i < r < s < j) : (i,j),(r,s) in P } |.
The sequence we have is nst(n) = Sum_{P in S(n)} nst(P).

Crossrefs

Cf. A200580, A200660 (other statistics related to supercharacter table).

Programs

  • Maple
    c:=proc(n,k,j) option remember;
      if n=3 and k=2 and j=1 then RETURN(1) fi;
      if k=2 and j=1 then RETURN(c(n-1,n-2,1)) fi;
      if k=j+1 then RETURN(c(n,j+1,j-1) + c(n-1,j,j-1)) fi;
      c(n,k-1,j)+c(n-1,k-1,j)
    end:
    nst:=proc(n) local res,k,j;
      res:=0;
      for j to n-3 do
         for k from j+1 to n-2 do
          res:=res+j*(k-j)*c(n,k,j) od; od;
      res
    end:
    seq(nst(n),n=1..21);
  • Mathematica
    c[n_, k_, j_] := c[n, k, j] = Which[n == 3 && k == 2 && j == 1, 1, k == 2 && j == 1, c[n - 1, n - 2, 1], k == j + 1, c[n, j + 1, j - 1] + c[n - 1, j, j - 1], True, c[n, k - 1, j] + c[n - 1, k - 1, j]];
    nst[n_] := Module[{res = 0, k, j}, For[j = 1, j <= n - 3, j++, For[k = j + 1, k <= n - 2, k++, res = res + j*(k - j)*c[n, k, j]]]; res];
    Array[nst, 21] (* Jean-François Alcover, Nov 25 2017, translated from Maple *)
Showing 1-3 of 3 results.