A278677 a(n) = Sum_{k=0..n} A011971(n, k)*(k + 1). The Aitken-Bell triangle considered as a linear transform applied to the positive numbers.
1, 5, 23, 109, 544, 2876, 16113, 95495, 597155, 3929243, 27132324, 196122796, 1480531285, 11647194573, 95297546695, 809490850313, 7126717111964, 64930685865768, 611337506786061, 5940420217001199, 59502456129204083, 613689271227219015, 6510381400140132872
Offset: 0
Keywords
Examples
Treeshelves of size 3: 1 1 1 1 1 1 / \ / \ / \ / \ 2 2 / \ 2 \ / 2 / \ 2 2 3 3 3 3 \ / 3 3 Pattern T231: 1 / / 2 \ 3 Treeshelves of size 3 that avoid pattern T231: 1 1 1 1 1 / \ \ / \ / \ 2 2 \ 2 \ / 2 / \ 2 3 3 3 3 / 3 Popularity of left children here is 5.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..572
- Jean-Luc Baril, Sergey Kirgizov, and Vincent Vajnovszki, Patterns in treeshelves, arXiv:1611.07793 [cs.DM], 2016.
- J. Françon, Arbres binaires de recherche : propriétés combinatoires et applications, Revue française d'automatique informatique recherche opérationnelle, Informatique théorique, 10 no. 3 (1976), pp. 35-50.
Crossrefs
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n=0, [1, 0], (p-> p+[0, p[1]*n])(b(n-1, m+1))+m*b(n-1, m)) end: a:= n-> b(n+1, 0)[2]: seq(a(n), n=0..22); # Alois P. Heinz, Dec 15 2023 # Using the generating function: gf := ((exp(z + exp(z)-1)*(z-1)) + exp(exp(z)-1))/z^2: ser := series(gf, z, 25): seq((n+2)!*coeff(ser, z, n), n=0..22); # Peter Luschny, Feb 01 2025
-
Mathematica
a[n_] := (n+3) BellB[n+2] - BellB[n+3]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Dec 01 2018 *)
-
Python
from sympy import bell HOW_MANY = 30 print([(n + 3) * bell(n+2) - bell(n + 3) for n in range(HOW_MANY)])
Formula
E.g.f.: ((exp(z + exp(z)-1)*(z-1)) + exp(exp(z)-1))/z^2.
a(n) = (n + 3)*b(n + 2) - b(n + 3) where b(n) is the n-th Bell number (see A000110).
Asymptotics: a(n) ~ n*b(n).
a(n) = Sum_{k=1..n+1} A285595(n+1,k)/k. - Alois P. Heinz, Apr 24 2017
a(n) = Sum_{k=0..n} Stirling2(n+2, k+1) * (n+1-k). - Ilya Gutkovskiy, Apr 06 2021
a(n) ~ n*Bell(n)*(1 - 1/LambertW(n)). - Vaclav Kotesovec, Jul 28 2021
a(n) = Sum_{k=n+1..(n+1)*(n+2)/2} k * A367955(n+1,k). - Alois P. Heinz, Dec 11 2023
Extensions
New name and offset 0 by Peter Luschny, Feb 01 2025
Comments