cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A367955 Number T(n,k) of partitions of [n] whose block maxima sum to k, triangle T(n,k), n>=0, n<=k<=n*(n+1)/2, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 5, 2, 3, 1, 1, 1, 2, 5, 10, 7, 7, 11, 3, 4, 1, 1, 1, 2, 5, 10, 23, 15, 23, 25, 37, 18, 14, 19, 4, 5, 1, 1, 1, 2, 5, 10, 23, 47, 39, 49, 81, 84, 129, 74, 78, 70, 87, 33, 23, 29, 5, 6, 1, 1, 1, 2, 5, 10, 23, 47, 103, 81, 129, 172, 261, 304, 431, 299, 325, 376, 317, 424, 196, 183, 144, 165, 52, 34, 41, 6, 7, 1
Offset: 0

Views

Author

Alois P. Heinz, Dec 05 2023

Keywords

Comments

Rows and also columns reversed converge to A365441.
T(n,k) is defined for all n,k >= 0. The triangle contains only the positive terms. T(n,k) = 0 if k < n or k > n*(n+1)/2.

Examples

			T(4,7) = 5: 123|4, 124|3, 13|24, 14|23, 1|2|34.
T(5,9) = 10: 1234|5, 1235|4, 124|35, 125|34, 134|25, 135|24, 14|235, 15|234, 1|23|45, 1|245|3.
T(5,13) = 3: 1|23|4|5, 1|24|3|5, 1|25|3|4.
T(5,14) = 4: 12|3|4|5, 13|2|4|5, 14|2|3|5, 15|2|3|4.
T(5,15) = 1: 1|2|3|4|5.
Triangle T(n,k) begins:
  1;
  .  1;
  .  .  1, 1;
  .  .  .  1, 1, 2, 1;
  .  .  .  .  1, 1, 2, 5, 2,  3,  1;
  .  .  .  .  .  1, 1, 2, 5, 10,  7,  7, 11,  3,  4,  1;
  .  .  .  .  .  .  1, 1, 2,  5, 10, 23, 15, 23, 25, 37, 18, 14, 19, 4, 5, 1;
  ...
		

Crossrefs

Row sums give A000110.
Column sums give A204856.
Antidiagonal sums give A368102.
T(2n,3n) gives A365441.
T(n,2n) gives A368675.
Row maxima give A367969.
Row n has A000124(n-1) terms (for n>=1).
Cf. A000217, A124327 (the same for block minima), A200660, A278677.

Programs

  • Maple
    b:= proc(n, m) option remember; `if`(n=0, 1,
          b(n-1, m)*m + expand(x^n*b(n-1, m+1)))
        end:
    T:= (n, k)-> coeff(b(n, 0), x, k):
    seq(seq(T(n, k), k=n..n*(n+1)/2), n=0..10);
    # second Maple program:
    b:= proc(n, i, t) option remember; `if`(i*(i+1)/2 b(k, n, 0):
    seq(seq(T(n, k), k=n..n*(n+1)/2), n=0..10);
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[i*(i + 1)/2 < n, 0, If[n == 0, t^i, If[t == 0, 0, t*b[n, i - 1, t]] + (t + 1)^Max[0, 2*i - n - 1]*b[n - i, Min[n - i, i - 1], t + 1]]];
    T[0, 0] = 1; T[n_, k_] := b[k, n, 0];
    Table[Table[T[n, k], {k, n, n*(n + 1)/2}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Oct 03 2024, after Alois P. Heinz's second Maple program *)

Formula

Sum_{k=n..n*(n+1)/2} k * T(n,k) = A278677(n-1) for n>=1.
Sum_{k=n..n*(n+1)/2} (k-n) * T(n,k) = A200660(n) for n>=1.
T(n,n) = T(n,n*(n+1)/2) = 1.

A291960 Triangle read by rows: T(n,k) = T(n-k,k-1) + k * T(n-k,k) with T(0,0) = 1 for 0 <= k <= A003056(n).

Original entry on oeis.org

1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 3, 0, 1, 3, 1, 0, 1, 7, 1, 0, 1, 7, 3, 0, 1, 15, 6, 0, 1, 15, 10, 1, 0, 1, 31, 16, 1, 0, 1, 31, 33, 3, 0, 1, 63, 45, 6, 0, 1, 63, 79, 14, 0, 1, 127, 130, 20, 1, 0, 1, 127, 198, 45, 1, 0, 1, 255, 300, 69, 3, 0, 1, 255, 517, 135
Offset: 0

Views

Author

Seiichi Manyama, Sep 06 2017

Keywords

Examples

			First few rows are:
  1;
  0, 1;
  0, 1;
  0, 1,  1;
  0, 1,  1;
  0, 1,  3;
  0, 1,  3,  1;
  0, 1,  7,  1;
  0, 1,  7,  3;
  0, 1, 15,  6;
  0, 1, 15, 10, 1.
		

Crossrefs

Row sums give A204856.
Columns 0-2 give A000007, A000012, A052551(n-3).

Formula

G.f. of column k: x^(k*(k+1)/2) / Product_{j=1..k} (1-j*x^j).

A204858 G.f.: Sum_{n>=0} n! * x^(n*(n+1)/2) / Product_{k=1..n} (1 - k*x^k).

Original entry on oeis.org

1, 1, 1, 3, 3, 7, 13, 21, 33, 67, 115, 183, 333, 541, 937, 1635, 2643, 4327, 7573, 12069, 20025, 33427, 54259, 87375, 144669, 231541, 374809, 607443, 970539, 1545367, 2502205, 3947541, 6270057, 9997867, 15776083, 24832503, 39351309, 61552501, 96632689
Offset: 0

Views

Author

Paul D. Hanna, Jan 20 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 3*x^4 + 7*x^5 + 13*x^6 + 21*x^7 +...
where A(x) = 1 + x/(1-x) + 2!*x^3/((1-x)*(1-2*x^2)) + 3!*x^6/((1-x)*(1-2*x^2)*(1-3*x^3)) + 4!*x^10/((1-x)*(1-2*x^2)*(1-3*x^3)*(1-4*x^4)) +...
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Sum[n!*x^Binomial[n + 1, 2]/Product[(1 - k*x^k), {k, 1, n}], {n, 0, 100}], {x, 0, n}], {n, 0, 50}] (* G. C. Greubel, Dec 19 2017 *)
  • PARI
    {a(n)=polcoeff(1+sum(m=1,n,m!*x^(m*(m+1)/2)/prod(k=1,m,1-k*x^k+x*O(x^n))),n)}

Formula

G.f.: 1/(1 - x/(1 - 2*x^2*(1-x)/(1 - 3*x^3*(1-2*x^2)/(1 - 4*x^4*(1-3*x^3)/(1 - 5*x^5*(1-4*x^4)/(1 - 6*x^6*(1-5*x^5)/(1 -...))))))), a continued fraction.
From Vaclav Kotesovec, Jun 18 2019: (Start)
a(n) ~ c * 3^(n/3), where
c = 8007.60951343849770902289074154120578227939552369... if mod(n,3)=0
c = 8007.30566699919825273673656299755925992856381905... if mod(n,3)=1
c = 8007.19663204881021378993302255541874790731157021... if mod(n,3)=2
(End)

A204855 G.f.: Sum_{n>=0} x^(n*(n+1)/2) / Product_{k=1..n} (1 - (n-k+1)*x^k).

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 12, 25, 54, 120, 278, 666, 1671, 4355, 11804, 33019, 94960, 279219, 836907, 2550991, 7901818, 24875931, 79667065, 259892494, 864832484, 2938862050, 10204420451, 36199678110, 131086662067, 483853193560, 1817012289562, 6927980565530
Offset: 0

Views

Author

Paul D. Hanna, Jan 20 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 12*x^6 + 25*x^7 +...
where A(x) = 1 + x/(1-x) + x^3/((1-2*x)*(1-x^2)) + x^6/((1-3*x)*(1-2*x^2)*(1-x^3)) + x^10/((1-4*x)*(1-3*x^2)*(1-2*x^3)*(1-x^4)) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(1+sum(m=1,n,x^(m*(m+1)/2)/prod(k=1,m,1-(m-k+1)*x^k+x*O(x^n))),n)}

A318770 Expansion of Sum_{k>=0} x^(k^2) / Product_{j=1..k} (1 - j*x^j).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 4, 8, 9, 17, 19, 38, 42, 80, 97, 174, 208, 389, 460, 826, 1049, 1790, 2248, 3989, 4933, 8451, 11116, 18300, 23742, 40446, 51774, 85774, 115454, 184806, 245967, 406768, 533210, 860295, 1179570, 1850325, 2505585, 4046594, 5407269, 8556317, 11877833, 18327723
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 03 2018

Keywords

Crossrefs

Programs

  • Maple
    a:=series(add(x^(k^2)/mul((1-j*x^j),j=1..k),k=0..100),x=0,47): seq(coeff(a,x,n),n=0..46); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 46; CoefficientList[Series[Sum[x^k^2/Product[(1 - j x^j), {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]

A306704 Expansion of Sum_{k>=0} x^(k*(k+1)/2) / Product_{j=1..k} (1 + j*x^j).

Original entry on oeis.org

1, 1, -1, 2, -2, 0, 1, 3, -5, -6, 11, 11, -12, -35, 33, 35, -22, -102, 170, 47, -224, -491, 874, 695, -598, -2606, 2246, 1503, -664, -6420, 11590, 2526, -13762, -34647, 61785, 37119, -32372, -181052, 147105, 104896, 12824, -436333, 799007, -109587, -868230, -2316921, 4447531
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 05 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 46; CoefficientList[Series[Sum[x^(k (k + 1)/2)/Product[(1 + j x^j), {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]

A306663 Expansion of Sum_{k>=0} x^(k*(k+1)) / Product_{j=1..k} (1 - j*x^j).

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 2, 4, 4, 8, 8, 17, 17, 35, 38, 74, 80, 161, 173, 336, 387, 713, 818, 1555, 1765, 3248, 3923, 6905, 8282, 15012, 17814, 31419, 39321, 66679, 82923, 144789, 177721, 302789, 390123, 642640, 821316, 1390825, 1755400, 2910638, 3833338, 6165743, 8060128, 13322378
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 04 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 48; CoefficientList[Series[Sum[x^(k (k + 1))/Product[(1 - j x^j), {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]

A306732 Expansion of Sum_{k>=0} x^(k*(k+1)/2) * Product_{j=1..k} (1 + j*x^j).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 1, 2, 5, 4, 7, 8, 5, 7, 11, 15, 22, 17, 31, 39, 20, 31, 39, 64, 81, 85, 125, 97, 170, 211, 121, 167, 229, 265, 385, 531, 548, 573, 814, 686, 1150, 1339, 860, 1131, 1344, 1888, 2109, 2780, 3656, 4127, 4294, 4498, 6320, 5568, 8747, 10260, 6856, 8673, 10580
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 06 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 59; CoefficientList[Series[Sum[x^(k (k + 1)/2) Product[(1 + j x^j), {j, 1, k}], {k, 0, nmax}], {x, 0, nmax}], x]
Showing 1-8 of 8 results.